Neural Networks as
Distribution Transformers

1.1 Introduction

So far we have seen that deep nets are stacks of simple functions, which compose to achieve
interesting mappings from inputs to outputs. This section will introduce a slightly dif-
ferent way of thinking about deep nets. The idea is think of each layer as a geometric
transformation of a data distribution.

1.2 A Different Way of Plotting Functions

Each layer in a deep net is a mapping from one representation of the data to another: f:
Xin — Xout- If Xin and Xoyt are both one-dimensional (1D), then we can plot the mapping
as a function with x;, on the x-axis and X,y on the y-axis (figure 1.1).

1

Xout

0.5

Xin

0.5 1

Now, we will instead consider a different way of plotting the mapping, where we simply
rotate the y-axis to be horizontal rather than vertical (figure ??).

Xout

0 0.5 1
TFFAFRARAR

= Hi

<00 o 000000
0 0.5 1

Xin

Figure 1.1: The tradi-
tional way of plotting the
function Xout = Xin.

Figure 1.2: An alternative
way of plotting a func-
tion (right). Functions are
mappings that rearrange
the input space. The iden-
tity function Xout = Xin,
shown here, means “no
rearrangement,” so the
mapping is straight lines.

Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

The depiction to the right makes it obvious that the plot Xt =X;, iS the identity map-
ping: datapoints get mapped to unchanged positions. Figure ?? shows a few more mappings

plotted in this way.

Figure 1.3: Map-
ping plots for several Xout Xout
simple functions that -1-050 05 1 -1-05 0 05
could be neural layers. 2 & & & %

I I |
/

\ \ l ! |
\ | | 1 1 /
co

1
Y
;! o

o
|
|
|
|
|
|
|
|
|
|

Vo o
Vo I [] ! T
\ 1 ! I] 2 / /] 1
\ | ! ! 1 / / 1 I
[T R A / / I I
L R B R / / 1 I
Vol / / ! I
00000 —— “~—0—0—0—0>
-1-05 0 05 1 -1-05 0 05 1
Xin Xin
Xout Xout
-1-05 0 05 1 -1-050 05 1
L S
7 I I /, / i
/1 I I ’ ' I
s | | ’ / I
I | | /o I 1
/’, I I I // f / I
_ I | | . . / I
Xout =Telu(Xin) | /1 1 Xout = sigmoid(xsn) |))
;o I I / I [
,/ ol I I ,/ / I /|
/ I | | l / ! ! ! 1
/ I ! ! ! / 1] 1 |
/ I I I I / / I I I
~—o—0—0—0> «~—0—0—0—0>
-1-050 05 1 -5 250 25 5
Xin

Xin

Each of the above are layers that could be found in a deep net. Linear layers, like those
in the top row above, stretch and squash the data distribution. The relu nonlinearity maps
all negative data to 0, and applies an identity map to all nonnegative data. The sigmoid

function pulls negative data to 0 and positive data to 1.

1.3 How Deep Nets Remap a Data Distribution

In this way, an incoming data distribution can be reshaped layer by layer into a desired
configuration. The goal of a binary softmax classifier, for example, is to move the datapoints
around until all the class 0 points end up moved to [1,0] on the output layer and all the class

1 end up moved to [0,1].
A deep net stacks these operations; an example is given in figure 1.4.

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 3

X2
-1-050 05 1
o
o I I
s I I
/
X, =relu(x; S | |
// 1 | | |
Vi / | | |
—S k%
\ ! ! ! /
\ \ I [/
\ \ I I /
j— |
\ \ | ! /
\ \ | 1 /
«—0 000606 ——
-1-050 05 1
X0

The plots above show how a uniform grid of datapoints get mapped from layer to layer
in a deep net. We can also use this plotting style to show how a nonuniform distribution
of incoming datapoints gets transformed. This is the setting in which deep nets actually
operate, and sometimes the real action of the network looks very different when viewed
this way. We can think of a deep net as transforming an input data distribution, pgata,
into an output data distribution, p..;. Each layer of activations in a network is a different
representation or embedding of the data, and we can consider the distribution of activations
on some layer £ to be py. Then, layer by layer, a deep net transforms pgata into py into po,
and so on until finally transforming the data to the distribution p,,+. Most loss functions can
also be interpreted from this angle: they penalize the divergence, in one form or another,
between the output distribution poy.: and a target distribution pearget.

A nice property of this way of plotting is that it also extends to visualizing two-
dimensional (2D)-to-2D mappings (something that conventional x-axis/y-axis plotting is
not well equipped to do). Real deep nets perform N-dimensional (ND)-to-ND mappings, but
already 2D-to-2D visualizations can give a lot of insight into the general case. In figure 1.5,
we show how three common neural net layers may act to transform a Gaussian blob of data

centered at the origin.

linear relu L2-norm

Xout

Figure 1.4: Mapping plot
for a linear-relu stack.

Figure 1.5: 2D map-
ping diagrams for several
neural layers.

Figure 1.6: An MLP

with three linear lay-

ers and two outputs,
suitable for performing
binary softmax regression.

A checkpoint is a record
of the parameters at some
iteration of training, that
is, if iterates of the
parameter vector are
6°,6',...,0r, then any 0%
can be recorded as a
checkpoint.

4 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

One interesting thing to notice here is that the relu layer maps many points to the axes
of the positive quadrant. In general, with relu-nets, a lot of data density will build up
along these axes, because any point not in the positive quadrant snaps to an axis. This effect
becomes exaggerated in real networks with high-dimensional embeddings. In particular,
for a width-N layer, the region that is strictly positive occupies only 2LN proportion of the
embedding space, so almost the entire space gets mapped to the axes after a relu layer. The
geometry of high-dimensional neural representations may become very sparse because of
this, where most of the volume of representational space is not occupied by any datapoints.

1.4 Binary Classifier Example

Consider a multilayer perceptron (MLP) that performs binary classification formulated as
two-way softmax regression. The input datapoints are each in R? and the target outputs are
in A! (the one-simplex), with layer structure linear —relu—1linear —relu—1linear.
This network is drawn below (figure 1.6).

08 88 88

Or expressed in math as follows:

z1=W;x+b < linear (1.1)
h;=relu(z) 4 relu (1.2)
z,=Wsh; +b, <4 linear (1.3)
h, =relu(z,) 4 relu (1.4)
z3=W3h, + bs < linear (1.5)
y =softmax(zs) <4 softmax (1.6)

Now we wish to train this net to classify between two data distributions. The goal is to
transform the input distribution into a target distribution that separates the classes, as shown
in figure 1.7.

In this example, the target output places all the red dots at (0, 1) and all the blue dots at
(1,0). These are the coordinates of one-hot codes for our two classes. Training the network
consists of find the series of geometric transformations that rearrange the input distribution
to this target output distribution.

We will visualize how the net transforms the training dataset, layer by layer, at four
checkpoints over the course of training. In figure 1.8, we plot this as a 3D visualization of
R? — R? mappings. Each dotted line connects the representation of a datapoint at one layer
to its representation at the next. The gray lines show, for each layer, how a square region

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 5

Input data Target output
y

Series of geometric transformations

(i.e., a neural net)

around the origin gets stretched, rotated, or squished to map to a transformed region on the
next layer.

linear

relu
linear
relu

linear

S

Training iteration

Of course, “stretched, rotated, or squished” is just an intuitive way to think about it, but
we can be more precise. The linear layers perform an affine transformation of the space,
while the relus project all negative values to the boundaries of the cone whose dimensions
are strictly positive. Layer by layer, over the course of training, the net learns to disentangle
these two classes and pull the points toward vertices of the one-simplex, achieving a correct
classification of the points!

1.5 How High-Dimensional Datapoints Get Remapped by
Deep Net

What if our data and activations are high-dimensional? The plots above only can visualize
1D and 2D data distributions. Deep representations are typically much higher-dimensional
than this, and to visualize them, we need to apply tools from dimensionality reduction.
These tools project the high-dimensional data to a lower dimensionality, for example 2D,

Figure 1.7: The goal of a
neural net classifier is to
rearrange the input data
distribution to match the
target label distribution.
(left) Input dataset with
two classes in red and
blue. (right) Target output
(one-hot codes).

Figure 1.8: How a deep
net remaps input data
layer by layer. The target
output is to move all the
red points to (0, 1) and all
the blue points to (1,0)
(one-hot codes for the
two classes). As training
progresses the network
gradually achieves this
separation.

Figure 1.9: How a power-
ful deep net remaps input
images into a disentan-
gled representation where
semantic classes (colors)
are separated. This deep
net is a vision transformer
(ViT [1]), which we will
learn about in section ??.
It was trained using con-
trastive language-image
pre-training (CLIP [3],
see section ??). Each ViT
block contains multiple
layers of neural process-
ing (see figure ??; we
visualize the embed-
dings right after the first
token norm in a block).
We apply t-SNE jointly
across all shown layers.

6 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

which can be visualized. A common objective is to perform the projection such that the
distance between two datapoints in the 2D projection is roughly proportional to their actual
distance in the high-dimensional space. In the next plot, figure 1.9, we use a dimensionality
reduction technique called t-Distributed Stochastic Neighbor Embedding t-SNE [2] to
visualize how different layers of a modern deep net represent a dataset of images of different
semantic classes, where each color represents a different semantic class. The network we
are visualizing is of the transformer architecture, and we will learn about all its details in
chapter ??. For now, the important things to note are that (1) we are only showing a selected
few of the layers (this net actually has dozen of layers) and (2) the embeddings are high-
dimensional (in particular, they are 38,400-dimensional) but mapped down to 2D by t-SNE.
Therefore, this visualization is just a rough view of what is going on in the net, unlike the
visualizations in the previous section, which showed the exact embeddings and every single
step of the layer-to-layer transformations.

ViT block x3

ViT block x3

ViT block x3

ViT block x3

RN

Notice that on the first layer, semantic classes are not well separated but by the last
layer the representation has disentangled the semantic classes so that each class occupies a
different part of representational space. This is expected because the final layer is near the
output of the network, and this network has been trained to output a direct representation of
semantics (in particular, this net was trained with contrastive language-image pre-training
[CLIP [3]], which is a method for learning semantic representations that we will learn about
in section ??).

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 7

1.6 Concluding Remarks

Layer by layer, deep nets transform data from its raw format to ever more abstracted and
useful representations. It can be useful to think about this process as a set of geometric
transformations of a data distribution, or a kind of disentangling where initially messy data
gets reorganized so that different data classes are cleanly separated.

References

[1] Alexey Dosovitskiy et al. “An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale”. In:
ICLR (2021).

[2] Laurens van der Maaten and Geoffrey Hinton. “Visual-
izing Data Using t-SNE”. In: Journal of Machine Learning
Research 9.Nov (2008), pp. 2579-2605.

[3] Alec Radford et al. “Learning Transferable Visual Mod-
els from Natural Language Supervision”. In: Interna-
tional Conference on Machine Learning. PMLR. 2021,
pp. 8748-8763.

	1 Neural Networks as Distribution Transformers
	1.1 Introduction
	1.2 A different way of plotting functions
	1.3 How Deep Nets Remap a Data Distribution
	1.4 Binary Classifier Example
	1.5 How High-Dimensional Datapoints Get Remapped by Deep Net
	1.6 Concluding remarks

	References

