1 Neural Networks

1.1 Introduction

Neural networks are functions loosely modeled on the brain. In the brain, we have billions
of neurons that connect to one another. Each neuron can be thought of as a node in a graph,
and the edges are the connections from one neuron to the next (figure 1.1). The edges are
directed; electrical signals propagate in just one direction along the wires in the brain.

XX

Outgoing edges are called axons and incoming edges are called dendrites. A neuron
fires, sending a pulse down its axon, when the incoming pulses, from the dendrites, exceed
a threshold.

1.2 The Perceptron: A Simple Model of A Single Neuron

Let’s consider a neuron, shaded in gray, that has four inputs and one output (figure 1.2).

A simple model for this neuron is the perceptron. A perceptron is a neuron with N inputs
{x;}¥, and one output y, that maps inputs to outputs according to the following equations:

-0

N
z=f(x)=Zwixi+b=wa+b < linear layer (1.1)
i=1
1, if z>0 . .
g(@)=) < activation function (1.2)
0, otherwise

y=8(f(x)) 4 perceptron (1.3)

Figure 1.1: A neural net-
work can be drawn as a
directed graph.

Figure 1.2: Perceptron.

Mathematically, f is an
affine function, but by
convention we call it a

“linear layer.” One way to
think of it is f is a linear

function of [ﬂ .

Figure 1.3: Value of
hidden unit and output
unit in a perceptron, as a
function of the input data.

2 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

In words, we take a weighted sum of the inputs and, if that sum exceeds a threshold (here
0), the neuron fires (outputs a 1). The function f is called a linear layer because it computes
a linear function of the inputs, w'x, plus a bias, b. The function g is called the activation
function because it decides whether the neuron activates (fires).

1.2.1 The Perceptron as a Classifier

People got excited about perceptrons in the late 1950s because it was shown that they can
learn to classify data [8]. Let’s see how that works. We will consider a perceptron with two
inputs, x; and x,, and one output, y. Let the incoming connection weights be w; =2, wy =1,
and b=0. The values of z and y, as a function of x; and x,, are shown in figure 1.3.

4 y
1 1 3
2
@ 1
@_.@ S0 80 0
1% -1
1 1
-1 0 1 10 1 3
X X

1 1

where y takes on values 0 or 1; so you can think of this as a classifier that assigns a class
label of 1 to the upper-right half of the plotted region.

1.2.2 Learning with a Perceptron

So a perceptron acts like a classifier, but how can we use it to learn? The idea is that given
data, {x?,y@}¥ | we will adjust the weights w and the bias b, in order to minimize a
classification loss, L:

* px _ g T G) 0]
w*,b _ar%v{rbllnﬁizzljc(w x® 4 b, y0) (1.4)
In figure 1.4, this optimization process corresponds to shifting and rotating the decision
boundary, until you find a line that separates data labeled as y=0 from data labeled as
y=1.

You might be wondering, what’s the exact optimization algorithm that will find the
best line that separates the classes? The original perceptron paper proposed one particu-
lar algorithm, the “perceptron learning algorithm.” This was an optimizer tailored to the
specific structure of the perceptron. Older papers on neural nets are full of specific learning
rules for specific architectures: the delta rule, the Rescorla-Wagner model, and so forth [7].
Nowadays we rarely use these special-purpose algorithms. Instead, we use general-purpose
optimizers like gradient descent (for differentiable objectives) or zeroth-order methods (for
nondifferentiable objectives). The next chapter will cover the backpropagation algorithm,
which is a general-purpose gradient-based optimizer that applies to essentially all neural

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 3
Bad fit Okay fit Good fit Figqre 1.4: p.ifferent
7 misclassifications 4 misclassifications 0 misclassifications possible decision surfaces
1 1 1 of a perceptron.

networks we will see in this book (but, note that for the perceptron objective, because it has
a non-differentiable threshold function, we would instead opt for a zeroth order optimizer).

1.3 Multilayer Perceptrons

Perceptrons can solve linearly separable binary classification problems, but they are other-
wise rather limited. For one, they only produce a single output. What if we want multiple
outputs? We can achieve this by adding edges that fan out after the perceptron (figure 1.5).

X y Figure 1.5: Multiple

O outputs fan out from a
z h neuron.

This network maps an input layer of data x to a layer of outputs y. The neurons in
between inputs and outputs are called hidden units, shaded in gray. Here, z is a preacti-
vation hidden unit and / is a postactivation hidden unit, that is, 4 = g(z) where g(-) is an
activation function like in equation (1.2).

More commonly we might have many hidden units in stack, which we call a hidden
layer (figure 1.6).

Figure 1.6: Mutilayer
perceptron.

How many layers does
this net have? Some texts
will say two [W, W3],
others three [x, {z, h}, y],
others four [x, z, h, y].
‘We must get comfortable
with the ambiguity.

w, W,

Because this network has multiple layers of neurons, and because each neuron in this net
acts as a perceptron, we call it a multilayer perceptron (MLP). The equation for this MLP

A multilayer network is a
sequence of
transformations fi, ..
that produce a series of
activations xi, ...

fa(x3,04)

'3S_>I>{<

f(x2,03)

B —

fo(x1,62)

X —

f1(x0,61)

—

%
S

L

» XLt

4 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

is:

z=W x+b < linear layer (1.5)
h=g(z) < activation function (1.6)
y=W,h+b, <4 linear layer (1.7)

In general, MLPs can be constructed with any number of layers following this pattern:
linear layer, activation function, linear layer, activation function, and so on.

The activation function g could be the threshold function like in equation (1.2), but more
generally it can be any pointwise nonlinearity, that is, g(h) =[g(h;), ..., g(hy)] and g is any
nonlinear function that maps R — R.

Beyond MLPs, this kind of sequence (linear layer, pointwise nonlinearity, linear layer,
pointwise nonlinearity, and so on) is the prototpyical motif in almost all neural networks,
including most we will see later in this book.

1.4 Activations Versus Parameters

When working with deep nets it’s useful to distinguish activations and parameters. The
activations are the values that the neurons take on, [x,z,hy,...,z; 1, h;1,¥]; slightly
abusing notation, we use this term for both preactivation function neurons and postacti-
vation function neurons. The activations are the neural representations of the data being
processed. Often, we will not worry about distinguishing between inputs, hidden units, and
outputs to the net, and simply refer to all data and neural activations in a network, layer by
layer, as a sequence [Xo, ..., X.], in which case x is the raw input data.

Conversely, parameters are the weights and biases of the network. These are the variables
being learned. Both activations and parameters are tensors of variables.

Often we think of a layer as a function x;,; =fi41(X;), but we can also make the parameters
explicit and think of each layer as a function:

X1 =fr1 (X1, O141) (1.8)

That is, each layer takes the activations from the previous layer, as well as parameters of the
current layer as input, and produces activations of the next layer. Varying either the input
activations or the input parameters will affect the output of the layer. From this perspective,
anything we can do with parameters, we can do with activations instead, and vice versa,
and that is the basis for a lot of applications and tricks. For example, while normally we
learn the values of the parameters, we could instead hold the parameters fixed and learn
the values of the activations that achieve some objective. In fact this is what is done in
applications such as style transfer, adversarial attacks, and network visualization, which we
will see in more detail in later chapters.

1.4.1 Fast Activations and Slow Parameters

So what’s different about activations versus parameters? One way to think about it is that
activations are fast functions of a datapoint: they are the result of a few layers of processing
this datapoint. Parameters are also functions of the data (they are learned from data) but they

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 5

are slow functions of datasets: the parameters are arrived at via an optimization procedure
over a whole dataset. So, both activations and parameters are statistics of the data, that is,
information extracted about about the data that organizes or summarizes it. The parameters
are a kind of metasummary since they specify a functional transformation that produces
activations from data, and activations themselves are a summary of the data. Figure 1.4.1
shows how this looks.

Data Parameters
oy — Learner — Q‘-~»~~~--Statistic of the dataset
;
Data Activations
x! Neural Net |— b’
Statist;ic of a datapoint

1.5 Deep Nets

Deep nets are neural nets that stack the above motif many times (figure 1.8).

heron

Linear
Nonlinearity
L

Each layer is a function. Therefore, a deep net is a composition of many functions:

F&) =fL(f1 (. L)) (1.9)

These functions are parameterized by weights [W,..., W] and biases [by,...,b.].
Some layers we will see later have other parameters. Collectively, we will refer to the
concatenation of all the parameters in a deep net as 6.

Deep nets are powerful because they can perform nonlinear mappings. In fact, a deep
net with sufficiently many neurons can fit almost any desired function arbitrarily closely, a
property we will investigate further in section 1.5.2.

1.5.1 Deep Nets Can Perform Nonlinear Classification

Let’s return to our binary classification problem shown previously, but now let’s make the
two classes not linearly separable. Our new dataset is shown in figure 1.9.

Here there is no line that can separate the zeros from the ones. Nonetheless, we will
demonstrate a multilayer network that can solve this problem. The trick is to just add more
layers! We can use the two layer MLP shown in figure 1.10.

Figure 1.7: Learning is
a function that maps a
dataset to parameters.
Inference, through a
neural net, is a function
that maps a datapoint to
activations.

Figure 1.8: Deep nets
consist of linear lay-
ers interleaved with
nonlinearities.

The L is the number of
layers in the net.

Figure 1.9: Dataset that
is not linearly separable.

Figure 1.10: A
simple MLP network.

The 1 is the indicator
function, which we define
as:

1 if x is true
1= .
0 otherwise

Figure 1.11: Values
of hidden units and
output unit for the
MLP in figure 1.10.

6 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

1 T 0\ T
0.5700 0007
S0 N

0 1 0
=051 | 1‘1 1‘17

-1
~1-050 0.5 1
X1

o6 0

W,

Consider using the following settings for W and Wj:

“h=ff ﬂ, Wo=[1 -] (1.10)
The full net then performs the following operation:
I=X1—X2, Z2=2X1+X <4 linear (1.11)
h; =max(z;,0), hy, =max(zp,0) <4 relu (1.12)
z=h—h 4 linear (1.13)
y=1(zz>0) 4 threshold (1.14)

Here we have introduced a new pointwise nonlinearity, the Rectified linear unit (relu),
which is like a graded version of the threshold function we saw above, and performs
better in practice.

Let’s visualize the values that the neurons take on as a function of x; and x; in figure 1.11.

h hy 23 y
1 1 1 1 3
2
1
S0 <0 <0 <0 %
1 1 1 1 3
21 0 1 -1 0 1 -1 0 1 -1 0 1 B
X1 X1 X1 X1

As can be seen in the rightmost plot in figure 1.11, at the output y, this neural net success-
fully assigns a value of 1 to the region of the dataspace where the datapoints labeled as 1
live. This example demonstrates that is possible to solve nonlinear classification problems
with a deep net. In practice, we would want to learn the parameter settings that achieve

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 7

this classification. One way to do so would be to enumerate all possible parameter settings
and pick one that successfully separates the zeros from the ones. This kind of exhaustive
enumeration is a slow process, but don’t worry, in later chapters we will see how to speed
things up using methods from optimization (in particular, gradient descent). But it’s worth
remarking that enumeration is always a sufficient solution, at least when possible parameter
values form a finite set.

1.5.2 Deep Nets Are Universal Approximators

Not only can deep nets perform nonlinear classification, they can in principle perform any
continuous input-output mapping. The universal approximation theorem [2] states that
this is true even for a network with just a single hidden layer. The caveat is that the num-
ber of neurons in the hidden layers will have to be very large in order to fit complicated
functions.

To get an intuition for why this is true, we will consider the case of approximating an
arbitrary function from R — R with a relu-network. First observe that any function can
be approximated arbitrarily well by a sum of indicator functions, that is, bumps placed at
different positions:

fE =Y will(i<x<f) (1.15)

As an example, in figure 1.12 we show a curve (blue line) approximated in this way. As the
width, 3 — «, of the bumps (black lines) goes to zero, the error in the fit goes to zero.

-20 -15 -10 -05 00 05 10 15 20
x

Next we will show that a relu-net can represent equation (1.15). The weighted sum
> i Wi... is the easy part: that’s just a linear layer. So we just have to show that we can
also write 1(av<x < /3) using 1inear and relu layers. It turns out the construction is rather

simple:
o=y (a—’y)) —relu<x_a) —relu (x— (5_7)> +re1u<x_ﬂ)>
Y Y Y Y

(1.16)

I« <x<6)%relu<

As v — 0, this approximation becomes exact. The input to each of the four relus in equa-
tion (1.16) is an affine function of the input x, hence these four values can be represented
by a linear layer with four outputs. Then we apply a relu layer to these four values,
and finally we apply a linear layer to compute the sum over these relus (a weighted

Technically, this theorem
only holds for continuous
functions on compact
subsets of R" — for
example a neural net
cannot fit noncomputable
functions. We will not be
rigorous in this section.
We direct the reader to
[12] for a formal
treatment of universal
approximation.

Figure 1.12: Any func-
tion from R — R can
be approximated arbi-
trarily well by a sum of
elementary bumps.

While we only consider
scalar functions R — R
here, a similar
construction can be used
to approximate general
functions of the form

R" — R™.

Here we show how a
neural net can represent a
function as a sum of basis
functions. This idea is also
foundational in signal
processing, where signals
are often represented as a
sum of sine waves
(chapter ??), boxes
(figure ??), or trapezoids
(figure 2?).

Figure 1.13: A bump
can be represented

as a weighted sum of
shifted and scaled relus.

Most literature refers to
such a net as having a
single hidden layer, using
the convention that we
don’t count pre- and
postactivation neurons as
separate layers.

If different layers have
different numbers of
neurons, then we may
specify the width per
layer. Here we will
assume all layers have the
same width and simply
speak of the width of the
network.

8 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

sum with weights [1,-1,-1,1]). Therefore equation (1.16) can be implemented as a 1inear-
relu-linear network. In figure 1.13 below, we show an example of constructing a bump
in this way.

2relu((x—(O—O.l))/O.l) relu((x-0)/0.1) 2reIu((x—(l—O.l))/O.l) relu((x-1)/0.1) 5 = 10<x<1)
! i
1 1 1 14 1 1 14
! 1 ’ \
0q4r=———= + Oqr=———= i + 0'————————'-I + 0 ——— = 01
1
-1 -1 L -1 l|| -1 -1
-2 ! -2 H -2 — -2 -2
-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2

Putting everything together, we have a 1inear-relu-linear for each bump, followed
by a linear layer for summing up all the bumps. The two linear layers in sequence
can be collapsed to a single linear layer, and hence the full function can therefore be
approximated, to arbitrary precision, by a 1inear-relu-linear net.

Notice that in this approximation, we need four relu neurons for each bump we are
modeling. Therefore if we want to approximate a very bumpy function, say with N bumps,
we will need 4N relu neurons. In general, to achieve arbitrarily good approximation to a
curve we may need an unbounded number of neurons in our network.

1.5.3 Depth versus Width

Above we saw that if you have a hidden layer with N neurons, you can fit a function with
O(N) bumps. The number of neurons on a single hidden layer is called its width. So, as
we increase the width of a network, we can fit ever more complicated functions. What if
we instead increase the depth of a network, that is, its number of layers? It turns out that
this can also be an effective way to increase the capacity of the net, but its effect is a bit
different than increasing width.

Interestingly, it is sometimes the case that deep nets require far fewer parameters to fit
data than wide nets. Evidence for this statement comes mostly from empiricism, where
researchers have found that deeper nets just work better in practice on many popular prob-
lems. However, there is also the beginning of a mathematical theory of when and why this
can happen. The basic idea of this theory is to establish that there are certain classes of func-
tion that can be represented with a polynomial number of neurons in a depth d network but
require an exponential number of neurons in a depth d’ network, for certain d’ <d. Argu-
ments along these lines are called depth separations, and the interested reader can refer to
[11] to learn more about this ongoing line of research.

1.6 Deep Learning: Learning with Neural Nets

Using the formalism we defined in chapter ??, learning consists of using an optimizer to find
a function in a hypothesis space, that maximizes an objective. From this perspective, neural
nets are simply a special kind of hypothesis space (and a particular parameterization of that

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 9

hypothesis space). Deep learning refers to learning algorithms that use this parameterized
hypothesis space.

Deep learning also typically involves using gradient-based optimization to search the
hypothesis space for the best fit to the data. We will investigate this approach in detail in
chapter ??, where we will learn about the backpropagation algorithm for gradient-based
learning with neural nets. However, it is certainly possible to optimize neural nets with
other methods, including zeroth-order optimizers like evolution strategies (section ??; [9]).

One intriguing alternative to backpropagation is called Hebbian learning [3]. Back-
propagation is a top-down learning algorithm, where errors incurred at the output (top) of
the net are propagated backward to inform earlier layers how to update their weights and
biases to minimize the loss; a form of learning from feedback. Hebbian learning, in con-
trast, is a bottom-up approach, where neurons wire up just based on the feedforward pattern
of activity in the net. The canonical learning rule in Hebbian methods is Hebb’s rule: “fire
together, wire together.” That is, we increase the weight of the connection between two neu-
rons whenever the two neurons are active at the same time. Although this learning rule is
not explicitly minimizing a loss function, it has been shown to lead to effective neural repre-
sentations. For example, Hebb-like rules can learn infomax representations, which capture,
in the neural activations, as much information as possible about the input signal [6]. Similar
rules lead to networks that act like memory banks [4]. Hebbian learning is also of interest
because it is considered to be more biologically plausible than backpropagation. This is
because Hebb’s rule can be computed locally—each neuron strengthens and weakens its
weights based just on the activity of adjacent neurons—whereas backpropagation requires
global coordination throughout the neural network. It is currently unknown how this global
coordination can be achieved in biological brains.

1.6.1 Data Structures for Deep Learning: Tensors and Batches

The main data structure that we will encounter in deep learning is the tensor, which is just
a multidimensional array. This may seem simple, but it’s important to get comfortable with
the conventions of tensor processing.

In general, everything in deep learning is represented as tensors—the input is one tensor,
the activations are tensors, the weights are tensors, the outputs are tensors. If you have data
that is not natively represented as a tensor, the first step, before feeding it to a deep net, is
usually to convert it into a tensor format. Most often we use tensor of real numbers, that is,
the elements of the tensor are in R.

Suppose we have a dataset {x®,y@}¥ of images x and labels y. The tensor way of
thinking about such a dataset is as two tensors, X € RVXCxHxW anq Y € RV*X, The first
dimension of the tensor is the number of elements in our dataset. The remaining dimensions
are the dimensionality of the images (Cy color channels by height H by width W) and labels
(K-way classification).

The activations in the network are also tensors. For the MLP networks we have seen so
far, the activation tensors have shape N x Cy, where C; is the number of neurons on layer /,
sometimes also called channels in analogy to the color channels of the input image. In later
chapters we will encounter other architectures where the activation layers have additional

Figure 1.14: The ten-
sors that represent
one pass through the
MLP in figure 1.10.

Figure 1.15: A 3D tensor
that could represent an
C X H x W color image.

10 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

dimensions, for example, in convolutional networks we will see activation layers that are
of shape N x Cy X Hy x Wj.

One other important concept is batch processing. Normally, we don’t process one
image at a time through a neural net. Instead we run a batch of images all at once, and
they are processed in parallel. A batch sampled from the training data can be denoted as
(x4 Y2 w}¥essen and the batch represented as a tensor has shape X € RNeacen X CoxHxW
and Y € RMVoeean XK,

The weights and biases of the net are also usually represented as tensors. The weights
and biases of a linear layer will be tensors of shape W, € R€+*C and b, € R,

As an example, in figure 1.14 below, we visualize all the tensors associated with a batch
of three datapoints being processed by the MLP from figure 1.10. For this network, the
input is not a set of images but instead a set of vectors X € RM=saXC0_ The output is one
value for each input vector, so we have Y € RNoaten X L

W,

W,
X E Z, H 1 Z, Y
Nbatch { —_— -> I -
~ ~ =~ W >
Co (O Gy 0)) 1

where the capital letters are the batches of datapoints and activations corresponding to
the lowercase names of datapoints and hidden units in figure 1.10.

This example shows the basic concept of working with tensors and batches for one-
dimensional data, but, in vision, most of the time we will be working with higher-
dimensional tensors. For image data we typically use four-dimensional tensors: batch x
channels x height x width; for videos we may use five-dimensional tensors: batch x chan-
nels x height x width x time. Three-dimensional (3D) scans have an additional depth
spatial dimension; videos of 3D data could therefore be represented by six-dimensional
tensors. As you can see, thinking in terms of two-dimensional matrices is not quite suf-
ficient. Instead, you should be imagining data processing as operating on N-dimensional
tensors, sliced and diced in different ways. As a step in this direction, you may find it
useful to visualize tensors in 3D, as shown in figure 1.15.

S

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 11

threshold sigmoid tanh) relu , leaky-relu (a =2)
1 1 1 1 / 1
0 -—l— 0 / 0 / 04 04
-1 -1 -1 -1+ -1
-2 -2 -2 T -2 -2
-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2

This is closer to the actual ND tensors vision systems work with, and many concepts can
be adequately captured just by thinking in 3D. We will see some examples in later chapters.

1.7 Catalog of Layers

Below, we use the color blue to denote parameters and the color red to denote
(inputs and outputs to each layer).

1.7.1 Linear layers

Linear layers are the workhorses of deep nets. Almost all parameters of the network are
contained in these layers; we call these parameters the weights and biases. We have already
introduced linear layers previously. They look like this:

=Wxi,+b <4 linear (1.17)

1.7.2 Activation layers

If a net only contained linear layers then it could only compute linear functions. This is
because the composition of N linear functions is a linear function. Activation layers add
nonlinearity. Activation layers are typically pointwise functions, applying a scalar to scalar
mapping on each dimension of the input vector. Typically parameters of these layers, if any,
are not learned (but they can be). Some common activation layers are defined below and
are plotted in figure 1.16:

. I, if [i1>0
[i1= . 4 threshold (1.18)
0, otherwise
1
[i]=m 4 sigmoid (1.19)
[(1=2*sigmoid(2*x;,[i])—1 4 tanh (1.20)
[{]=max(x;,[i], 0) 4 relu (1.21)
1,0), if i1>0
[i1= ma)f(.0, _[l] - 4 leaky-relu (1.22)
amin(x;,[i],0), otherwise

1.7.3 Normalization layers

Normalization layers add another kind of nonlinearity. Instead of being a pointwise nonlin-
earity, like in activation layers, they are nonlinearities that perturbs each neuron based on the

Figure 1.16: Common
pointwise nonlinearities.

Recall from statistics that
the standard score of a
draw of a random variable
is how many standard
deviations it differs from
the mean: z=2£

-

Notice that layernorm,
like L,-normalization,
maps the activation vector
to the surface of a
hypersphere, but it also
centers the activations to
have zero mean, and then
scales and shifts the
activations via v and (.
As an exercise, see if you
can write layernorm using
L,-normalization as one
step.

Figure 1.17: Batch-
norm vs layernorm.
Gray indicates the region
over which mean and
variance are computed.

12 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

collective behavior of a set of neurons. Let’s start with the example of batch normalization
(batchnorm) [5].

Batchnorm standardizes each neural activation with respect to its mean and variance
over a batch of datapoints. Mathematically,

[-Elealll |
—+

Var[xi,[i]]
where + and [are learned parameters of this layer that maintain expressivity so that the
layer can output values with non-zero mean and non-unit variance. Most commonly batch-
norm is applied using training batch statistics to compute the mean and variance, which
change batch to batch. At test time, aggregate statistics from the training data are used.
However, using test batch statistics can be useful for achieving invariance to changes in the
statistics from training data to test data [13].

There are numerous other normalization layers that have been defined over the
years. Two more that we will highlight are L, normalization and layer normalization
(layernorm) [1]. L, normalization projects the inputs onto the unit hypersphere, which
useful for bounding the activations to unit vectors:

[7]

[{]1=1 < batchnorm (1.23)

[i]= o] <4 L2-norm (1.24)
2
Layernorm is similar except that it standardizes the vector of input activations:
| X
u—ﬁ; [i] (1.25)
R
2_ . 2
o —N;([i] - p) (1.26)
o lil-p
[i]=y————+7 < layernorm (1.27)
g

Notice that layernorm also looks quite similar to batchnorm. Both standardize activations

but do so with respect to different statistics. Layernorm computes a mean and variance over
elements of a datapoint x;,, and will do so separately for each such datapoint in a batch.
Batchnorm computes the mean and variance per channel over datapoints in a batch. If we
have a batch stored in the tensor X € RM=tx*C then what layernorm does looks just like
a “transpose” of what batchnorm does. Batchnorm standardizes each element of the tensor
by the mean and variance of its column. Layernorm standardizes each element by the mean
and variance of its row:

batchnorm layernorm

N batch

H/_/
C channels

Draft chapter from Foundations of Computer Vision by Torralba, Isola, Freeman 13

One issue with batchnorm is that it requires processing a batch of datapoints all at once,
and introduces a dependency between each datapoint in the batch. This violates the prin-
ciple that datapoints should be processed independently and identically (iid), and this can
lead to bugs if your method relies on the iid assumption. Layernorm does not have this
problem and does indeed process each datapoint in an iid fashion.

1.7.4 Output layers

The last piece we need is an output layer that maps a neural representation—a high-
dimensional array of floating point numbers—to a desired output representation. In
classification problems, the desired output is a class label, and the most common output
operation is the softmax function, which we have already encountered in previous chapters.
In image synthesis problems, the desired output is typically a 3D array with dimensions
N x M x 3, and values in the range [0, 255]. A sigmoid multiplied by 255 is a typical output
transformation for this setting. The equations for these two layers are:

e’ [i]

= Kifk < softmax
Zk:l e~ TVinlkl]

[i]
(1.28)

[i1=255 % sigmoid(x;,[i]) < common layer for image output problems
(1.29)

In the softmax definition we have added a temperature parameter 7, which is commonly
used to scale how peaky, or confident, the predictions are.

The output layer is the input to the loss function, thus completing our specification of the
deep learning problem. However, to use the outputs in practice requires translating them
into actual pictures, or actions, or decisions. For a classification problem, this might mean
taking the argmax of the softmax distribution, so that we can report a single class. For
image prediction problems, it might mean rounding each output to an integral value since
common image formats represent red-green-blue values as integers.

There are of course many other output transformations you can try. Often, they will
be very problem specific since they depend on the structure of the output space you are
targeting.

1.8 Why Are Neural Networks a Good Architecture?

As you will soon learn, almost all modern computer vision algorithms involve neural nets in
one way or another. So you may be wondering: why are deep nets such a good architecture?
We will highlight here five reasons:

1. They are high capacity (big enough nets are universal approximators).

2. They are differentiable (the parameters can be optimized via gradient descent).

3. They have good inductive biases (neural architectures reflect real structure in the
world).
4. They run efficiently on parallel hardware.

See Figure 2 of [14] for
further normalization
schemes visualized this
way.

14 Draft of Foundations of Computer Vision by Torralba, Isola, Freeman

5. They build abstractions.

Let’s look at reasons 1-3 in light of the discussion of searching for truth from chapter ??
(see figure ??). Reason 1 relates to the size of the hypothesis space. The hypothesis space
can be made very big if we use a large neural network with many parameters. So we can
usually be sure that our true solution (or a close approximation to it) does indeed lie in the
space spanned by the neural net architecture. Reason 2 says that searching for the solution
within this space is relatively easy, since we can use gradients to direct us toward ever
better fits to the data. Reason 3 is one we will only come to appreciate later in the book as
we investigate more advanced neural net architectures. It turns out that these architectures
impose constraints and regularizers that bias our search toward solutions that capture true
structure about the visual world, and this leads to learned solutions that generalize.

Reason 4 is equally important to the first three: it says we can do all this efficiently
because most computations can be parallelized on modern hardware; in particular both
matrix multiplies (1inear layers) and pointwise operations (e.g., relu layers) are easy
to parallelize on graphical processing units. Further, most operations are applied to image
batches, where each item in the batch can be sent to a different parallel compute node.

Reason 5 is the perhaps the most subtle. It is related to the layered structure of neural
nets. Layer by layer, neural nets build up increasingly abstracted representations of the
input data, and these abstractions tend to be increasingly useful. This argument is not easy
to appreciate at first glance, but it will be a major theme of the subsequent chapters in
this book, especially those on representation learning. For now, just keep in mind that the
internal representations that are built up layer by layer in deep nets are useful and important
beyond just the net’s overall input-output behavior.

1.9 Concluding Remarks

Neural nets are a very simple and useful parameterized hypothesis space. They are universal
approximators that can be trained via gradient descent and run on parallel hardware. Deep
nets are especially effective in computer vision; as we will soon see, deep architectures
can be constructed that specifically reflect structure in the visual world, and make visual
processing highly efficient and performant. Artificial neural nets also have connections to
the real neural nets in our brains. This connection runs deeper than merely sharing a name:
the deep net architectures we will see later in this book (e.g., convolutional networks, trans-
formers) are our best current models of computation in animal brains, in the sense that they
explain brain data better than any competing models [10]. This is a class of models truly
worth paying attention to.

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. Layer Normalization. 2016. arXiv: 1607.06450
[stat.ML].

[2] G. Cybenko. “Approximation by Superpositions of a
Sigmoidal Function”. In: Mathematics of Control, Signals
and Systems 2.4 (Dec. 1989), pp. 303-314. por: 10.1007
/BF02551274.

[3] Donald Olding Hebb. The Organization of Behavior: A
Neuropsychological Theory. Psychology Press, 2005.

[4] John J Hopfield. “Neural Networks and Physical Sys-
tems with Emergent Collective Computational Abilities.”
In: Proceedings of the National Academy of Sciences 79.8
(1982), pp. 2554-2558.

[5] Sergey loffe and Christian Szegedy. “Batch normal-
ization: Accelerating deep network training by reducing
internal covariate shift”. In: International Conference on
Machine Learning (2015), pp. 448—456.

[6] Ralph Linsker. “Self-Organization in a Perceptual Net-
work”™. In: Computer 21.3 (1988), pp. 105-117.

[7] Robert A Rescorla. “A Theory of Pavlovian Condition-
ing: Variations in the Effectiveness of Reinforcement and
Non-Reinforcement”. In: Classical Conditioning, Current
Research and Theory 2 (1972), pp. 64-69.

[8] Frank Rosenblatt. “The Perceptron: A Probabilistic
Model for Information Storage and Organization in the
Brain.” In: Psychological review 65.6 (1958), p. 386.

[9] Tim Salimans et al. “Evolution Strategies as a Scal-
able Alternative to Reinforcement Learning”. In: (2017).
https://arxiv.org/abs/1703.03864.

[10] Martin Schrimpf et al. “Integrative Benchmarking to
Advance Neurally Mechanistic Models of Human Intelli-
gence”. In: Neuron (2020).

[11] Matus Telgarsky. “Benefits of Depth in Neural Net-
works”. In: Conference on Learning Theory. PMLR. 2016,
pp. 1517-1539.

[12] Matus Telgarsky. Deep learning theory. Lecture notes.
2021.

[13] Dequan Wang et al. “Fully Test-Time Adaptation by
Entropy Minimization”. In: (2020). https://arxiv.org/abs/2006.10726.

[14] Yuxin Wu and Kaiming He. “Group normalization”.
In: Proceedings of the European conference on computer
vision (ECCV). 2018, pp. 3—-19.

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274

	1 Neural Networks
	1.1 Introduction
	1.2 The Perceptron: A Simple Model of A Single Neuron
	1.2.1 The Perceptron as a Classifier
	1.2.2 Learning with a Perceptron

	1.3 Multilayer Perceptrons
	1.4 Activations versus Parameters
	1.4.1 Fast Activations and Slow Parameters

	1.5 Deep Nets
	1.5.1 Deep Nets Can Perform Nonlinear Classification
	1.5.2 Deep Nets Are Universal Approximators
	1.5.3 Depth versus Width

	1.6 Deep Learning: Learning with Neural Nets
	1.6.1 Data Structures for Deep Learning: Tensors and Batches

	1.7 Catalog of Layers
	1.7.1 Linear layers
	1.7.2 Activation layers
	1.7.3 Normalization layers
	1.7.4 Output layers

	1.8 Why Are Neural Networks a Good Architecture?
	1.9 Concluding Remarks

	References

