Chapter 1

Transfer learning and adaptation

Note: Unfinished. To be added: prompting, domain adaptation figures, knowledge distilla-
tion. Draft chapter from Torralba, Isola, Freeman

A common criticism of current deep learning systems is that they are data hungry. To
learn a new concept like “is this a dog?” may require showing a deep net thousands of labeled
examples of that concept. Humans, on the other hand, can learn to recognize a new kind of
animal after seeing it just once, an ability known as one-shot learning.

Humans can do this because we have extensive prior knowledge we bring to bear to
accelerate the learning of new concepts. Deep nets are data hungry when they are trained
from scratch. But they can actually be quite data efficient if we give them appropriate prior
knowledge and the means to use their priors to accelerate learning. Transfer learning deals
with how to use prior knowledge to solve new learning problems.

Transfer learning is an alternative to the ideas we saw last chapter, where we simply
trained on a broad distribution of data so that more test queries happen to be things we
have encountered before. Because it is usually impossible to train on all queries we might
encounter, we often need to rely on transfer learning to adapt to new kinds of queries.

Transfer learning algorithms involve two parts:

1. What we transfer

2. What we adapt

Method What is transferred | What is adapted
Prompting Mapping Inputs
Domain adaptation Mapping Inputs
Finetuning Mapping init Mapping
Distillation Targets Mapping
Linear probes Mapping Outputs

Table 1.1: Different kinds of adaptation.

1.1 Finetuning

There are many ways to do transfer learning. We will start with perhaps the simplest: when
you encounter a new task, just keep on learning as if nothing happened.

Suppose you are working at a farm and the drones that water the plants need to be
able to recognize whether the crop is wheat or corn. Using the machinery we have learned
so far, you know what to do: gather a big dataset of aerial photos of the crops and label
each as either wheat or corn; then, train your favorite classifier to perform the mapping
fo + X — {wheat,corn}. It works! The crop yield is plentiful. Now a new season rolls

By convention, we call
the first phase of training
“pretraining” and the
second stage “finetuning”,
since often pretraining
involves extensive
training “in the factory”,
on a big dataset and
thousands of processors,
whereas usually
finetuning refers to small
updates done “in the
wild” or on-device, with
far fewer computational
and data resources.

2 CHAPTER 1. TRANSFER LEARNING AND ADAPTATION

around and it turns out the value of corn has plummeted. You decide to plant soybeans
instead. So you need a new classifier, what should you do?

One option is to train a new classifier from scratch, this time on images of either wheat or
soybeans. But you already know how to recognize wheat — you still have last year’s classifier
fo. We would like to make use of fy to accelerate the learning of this year’s new classifier.
Finetuning consists of initialializing a new classifier with the parameter vector from last
year’s model, and then training it as usual. In other words, finetuning is making small (fine)
adjustments (tuning) to the parameters of your model to adapt it to do something slightly
different than what it did before. Or even a lot different.

Here is a diagram of the basic algorithm for finetuning:

Pretraining Finetuning
y Y
’a wheat wheat
f - u corn - soybeans

y/
wheat
soybeans

There are three stages: 1) pretrain f : X —), 2) initialize f' = f, 3) finetune
fi o X' — V' The full algorithm is written below, with f and f’ indicated as just a
continually learning fy with different iterates of 6 as learning progresses:

Algorithm 1: Training one model, then finetuning to produce a second model;
using gradient descent

1 Input: initial parameter vector 6, data {2, y®M}N {x'(i),y’(i) M. learning rates

1 and 19
Output: trained models fg~v and fyn+um
Pretraining: for k=1,...,K; do

J = Ee y [L(for—1(2), y)]

OF — 0F=1 — 1 VoJ

Finetuning: for k=1,..., K> do
7 J =]E;v’,y' [ﬂ(fekaN (LL'/), y/)]
9k:+N N 0k71+N _ 772V0J

D N W N

®

Finetuning is simple and works well. But there is one tricky bit we still need to deal with:
what if the structure of fy is incompatible with the new problem we wish to finetune on?

For example, suppose f is a neural net and 6 are the weights and biases of this net. Then
the above algorithm will only work if the dimensionality of X matches the dimensionality of
X', and the same for)V and). This is because, for our neural net model, fy has the same
domain and range regardless of 8. What if we start with our net trained to classify between
wheat and corn, and now want to finetune it to classify between wheat, corn, and soybeans?
The dimensionality of the output has changed from two classes to three.

To handle this it is common to cut off the last layer of the network and replace it with a
new final layer that outputs the correct dimensionality. If the input dimensionality changes,
you can do the same with the first layer of the network. Here’s what this looks like:

To be precise, let f : X —)Y decompose as f = fy o foo f3, with f; : X — 2,
fo: Z1 — 25, and f3 : Z5 — Y. Now we wish to learn a function f’ : X’ —), that
decomposes as f/ = f{ o fho fi, with f{ : X' — 21, fa: Z1 = 2o, and f3: Z5 —)'. The

1.2. LINEAR PROBES 3

Pretraining Finetuning

y/

wheat

fa | —=Z>—|f}|— [Ocom
soybeans
: Y

wheat

5 | —=Z2—|fi|— |O]corn
soybeans

finetuning approach here would be to first learn f, then, to learn f’, we initialize f with the
parameters of f and initialize f] and f} randomly (i.e. train these from scratch).

Transfer learning algorithms are differentiated largely based on the settings in which they
apply. Do we keep around the data for task 1 when we move on to task 27 When we train
the model for task 1, do we know what task 2 will be? And so forth.

y

2 azza»:::?

1.2 Linear probes

As discussed above, a model can be adapted by changing some or all of its parameters, or by
adding entirely new modules to the computation graph. One important kind of new module
is a “read out” module that takes some features from the computation graph as input and
produces a new prediction as output. When these modules are linear, they are called linear
probes. These modules are relatively lightweight (few parameters) and can be optimized
with tools from linear optimization (where there are often closed form solutions). Because
of this, linear probes are very popular as a way of repurposing a neural net to perform a
new task. These modules are also useful as a way of assessing what kind of knowledge each
feature map in the original network represents, in the sense that if a feature map can linearly
classify some kind of attribute of the data, then that feature maps “knows” something about
that attribute. In this usage, linear probes are probing the knowledge represented in some
layer of a neural net.

1.3 Knowledge distillation

Knowledge distillation transfers prediction targets from one learning problem to another.
This is useful whenever the second learner is somehow less privileged than the first.

1.4 Prompting

Prompting edits the input data to solve a new problem.

1.5 Generative data

Generative data transfers knowledge about the input data to accelerate future problem solv-
ing on this same kind of data.

1.6 Domain adaptation

Often, the data we train on comes from a different distribution, or domain, than the data
we will encounter at test time. For example, maybe we have trained a recognition system on
Internet photos and now we want to deploy the system on a self-driving car. The imagery the

4 CHAPTER 1. TRANSFER LEARNING AND ADAPTATION

car sees looks very different than everyday photos you might find on the Internet. Domain
adaptation refers to methods for adapting the training domain to be more like the test
domain, or vice versa.

The first option is to adapt the test data, {z@st, yﬁ?st}i]il to look more like the training
data. Then f should work well on both the training data and the test data. Or we can go
the other way around, adapting the training data to look like the test data, before training
f on the adapted training data. In either case, the trick is to make the distribution of test
and train data identical, so that a method that works on one will work just as well on the
other.

Commonly, we only have access to labels at train time, but may have plentiful unlabeled
inputs {z}}¥ | at test time. This setting is sometimes referred to as unsupervised domain
adaptation. Here we cannot make use of test labels but we can still align the test inputs to
look like the training inputs (or vice versa). One way to do so is to use a generative adversarial
network (Chapter ?77) that “translates” the data in one domain to look identically distributed
as the data in the other domain [Zhu et al. 2017, Hoffman et al. 2018]. A simple version of
this algorithm is given below:

Algorithm 2: Unpaired domain adaptation via translation

Input: training data {asg)ain, yg,)am N |, test data, {xfc(e;t M,

Output: trained model F'

Train predictor on train: f =argming E;, .. ye0in [£(f (Ttrain)s Yerain)]
Train translator Xies: to Xirain:

G = argming maxp B, [log D(@train))] + Ea,... [1 — D(G(Ztest))]

return F = fo G

N

o

1.7 RNNs from the lens of adaptation

RNNs update their hidden states based as they process a sequence of data. These changes
in hidden state change the behavior of the mapping from input to output. Therefore, RNNs
adapt as they process data. Now consider that learning is the problem of adapting future
behavior as a function of past data. RNN’s can be run on sequences of frames in a movie or
on sequences of pixels in an image. They can also be run on sequences of training points in a
training dataset! If you do that, then the RNN is doing “learning”. Learning such an RNN
can be considered meta-learning. For example, let’s see how we can make an RNN do super-
vised learning. Supervised learning is the problem of taking a set of examples {x(i), y“”»fi1
and inferring a function f : x — y. Without loss of generality, we can define an ordering
over the input set, so the learning problem is to take the sequence {a:(l), y oz y(”)}
as input and produce f as output.

The goal of supervised learning is that after training on the training data, we should do
well on any random test query. After processing the training sequence {a:(l), yM oz gy) 1,
an RNN will have arrived at some setting of its hidden state. Now if we feed the RNN a new
query (1) the mapping it applies, which produces an output y("t1), can be considered
the learned function f. This function is defined by the parameters of the RNN along with
its hidden state that was “learned” from the training sequence. Since we can apply this “f”
to any arbitrary query z("t1 what we have is a learned function that operates just like
a function learned by any other learning algorithm; it’s just that in this case the learning
algorithm was an RNN.

Bibliography

J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell.
Cycada: Cycle-consistent adversarial domain adaptation. In International conference on
machine learning, pages 1989-1998. PMLR, 2018.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Computer Vision (ICCV), 2017 IEEE Interna-

tional Conference on, 2017.

