Chapter 1

Generative modeling meets
representation learning

Draft chapter from Torralba, Isola, Freeman

This chapter is about models that unite the ideas of both generative modeling and rep-
resentation learning. These models learn mappings both to and from data.

The intuition is that generative models map a simple base distribution (“noise”) to data,
whereas representation learning maps data to simple underlying representations (“embed-
dings”). These two problems are, essentially, inverses of each other. Many algorithms explic-
itly treat them as inverse problems, where solving the problem in one direction can inform
the solution in the other direction.

In Chapter ??7, we described neural nets as being a sequence of mappings from raw data
to ever more abstracted representations, layer by layer. This perspective puts representation
learning in the spotlight: deep learning is just representation learning! Let us now point
out an alternative perspective: in backwards order, deep nets are mappings from abstracted
representations to ever more concrete representations of the data, layer by layer. This “back-
wards” ordering is the direction in which deep generative networks work. This perspective
puts the spotlight on generative modeling: deep learning is just generative modeling! Indeed
both modeling directions are valid, and the full picture looks like this:

Embedding

Representation learning ———>

€——— Generative modeling

Data

Moving backwards
through a net is also
what backprop does, but
it computes a different
function: backprop
computes the gradient

V f whereas here we focus
on the inverse 1.

Here we label one side as
“Data” and the other as
“Embedding”, but what’s
the precise difference
between these two
things? Why is an RGB
image “data” while a
100-dimensional vector of
neural activations is an
“embedding”? This is a
question for you to think
about; there is no “right”
answer.

2 CHAPTER 1. GENERATIVE MODELING MEETS REPRESENTATION LEARNING

1.1 Latent variables as representations

In Chapter 7?7, we introduced generative models with latent variables z. In that context, the
role of the latent variable was to specify all unobserved factors that might affect the output
of a model. For example, if the model predicts the color of a black and white photo, it is
a mapping ¢ : X,z — y, with x being the black and white input, y being the color output
and z being any other information that needs to be known in order to make the mapping
completely deterministic — for example, the color of a t-shirt which cannot be inferred solely
form the black and white input. In the extreme case of unconditional generative models, all
properties of the generated images are controlled by the latent variables.

What we did not mention in Chapter 7?7, but will focus on now, is that latent variables
are representations of the data. In the case of an unconditional generative model, the latent
variables are a complete representation of the data: all information in the data is represented
in the latent variables.

Given this connection, this chapter will ask the question: are latent variables good rep-
resentations of the data? And can they be combined with other representation learning
algorithms?

1.2 Technical setting

We will consider random variables z and x related as follows, with g being deterministic
generator (a.k.a. decoder) and f being a deterministic encoder:

X ~~ Pdata Z ~ Dy (11)
i = f(x) %= g(2) (12)

f and ¢ will be trained so that g ~ f~! which means that X ~ x and z ~ z. In Figure 77,
we sketched how representation learning maps from a data domain to a simple embedding
space. We can now put that diagram side by side with the equivalent diagram for generative
modeling. Notice again how they are just the same thing in opposite directions:

Representation learning Generative modeling

Data space Representation space Representatior} space Data space

Figure 1.1: Generative modeling performs the opposite mapping from representation learn-
ing.

The critical thing in most generative models, which is not necessarily true for represen-
tation learning models, is that we assume we know the distribution p,, and typically it has
a simple form such as a unit Gaussian. Knowing this distribution allows us to sample from
it and then generate images via g.

One of the most important quantities we will measure is the data log likelihood function
L({x}}¥,,0), which measures the log likelihood of the data under the model py:

N
LH{xD}Y,,0) = logps(x™) (1.3)
=1

1.3. VARIATIONAL AUTOENCODERS 3

Many methods use a max likelihood objective, optimizing L w.r.t. 6. To compute the
likelihood function, we need to compute py(x). One way to express this function is as the
marginal likelihood of x, marginalizing over all unobserved latent variables z:

po(x) = / Po(X[2)py (2)dz (1.4)

The advantage of expressing pp(x) in this way is that it reduces the modeling problem to
learning the conditional distribution pg(X|z), which itself can be straightforwardly modeled
using ¢ (again, assuming we know p,). For example, we could model pg(X|z) = N(u =
g(z),0 = 1), i.e . just place a unit Gaussian distribution centered on g(z).

The integral in Eqn. 1.4 is expensive so most generative models either approximate the
integral or somehow sidestep the need to explicitly calculate it. We will examine a few such
strategies next.

1.3 Variational Autoencoders

1.3.1 The decoder of an autoencoder is a data generator

In Chapter ?? we learned about autoencoders. These are models that learn an embedding
that can be decoded to reconstruct the input data. You may already have noticed that the
decoder of an autoencoder looks just like a generator. It is a mapping from a representation
of the data, z, back to the data itself, x. Given a z, we can synthesize an image by passing
it through the decoder of the autoencoder:

Encoder Decoder
-
<
g z
)
(=)
)
]
+~
=
<
1|
5
o Decoder
o
=
@ z
2
= Z ~ Pz
fan
B}
a
5}
@)

But how do we get this z7 One goal of generative modeling is to be able to make up
random images from scratch. So we need a distribution from which we can sample z’s from
scratch, i.e. we need p,. An autoencoder doesn’t directly give us this. You might ask, what
if, after training an autoencoder, you just sample a random z, say from a unit Gaussian, and
feed it through the decoder? The problem is that this sample might be very different from
what the decoder was trained on, and it therefore might not map to a natural looking image.
For example, maybe the encoder has learned to map all images to embeddings far from the
origin; then a unit Gaussian z would be far out of distribution and the decoder’s behavior
could be arbitrary for this out of distribution input.

In general, the embedding space of an autoencoder might be just as complicated to model
as the data space we started with:

Variational autoencoders (VAEs) are a way to turn an autoencoder into a proper
generative model, which can be sampled from and which maximizes data likelihood under

Mixture models are
probability models of the

form P(x) = >, wipi(x).

You can think of a
function as the infinite set
of values a variable takes
on over some domain.

4 CHAPTER 1. GENERATIVE MODELING MEETS REPRESENTATION LEARNING

a formal probabilistic model. The trick is very simple: just take a vanilla autoencoder
and 1) regularize the latent distribution to squish it into a Gaussian (or some other base
distribution), 2) add noise to the output of the encoder. In code, it can be as simple as a
two line change!

Okay, but seeing why this is the right and proper thing to do requires quite a bit of math.
We will derive it now, using a different approach than in most texts. We think this approach
makes it more intuitive what is going on. See [Kingma et al. 2019] for the more standard
derivation.

1.3.2 The VAE hypothesis space

VAE’s are max likelihood generative models, which maximize the likelihood function L in
Eqn. 1.4. What distinguishes them from other max likelihood models is their particular
hypothesis space and optimization algorithm. We will first describe the hypothesis space.

Remember the Gaussian generative model from Chapter ?? (a.k.a. fitting a Gaussian to
data)? We stated that this model is too simple for most purposes, but can form the basis of
more flexible density models, which work by combining a lot of simple distributions. We gave
one example in Chapter ?7: autoregressive models, which model a complicated distribution
as a product over many simple conditional distributions. VAEs follow a slightly different
strategy: they model complicated distributions as sums of simple distributions.

In particular, VAEs are mixture models, and the most common kind of VAE is a
mixture of Gaussians. The mixture of Gaussians model is in fact classical model that
represents a density as a weighted sum of Gaussian distributions:

k
po(x) = Z wiN (x5 pg, i) < Mixture of Gaussians (1.5)
i=1

where the parameters are § = {u;, 3;}¥_ |, i.e. the mean and variance of all Gaussians in
the mixture. Unlike classical Gaussian mixture models, VAEs use an infinite mixture of
Gaussians, i.e. k — oc.

But wait, how can we parameterize an infinite mixture? We can’t learn an infinite set of
means and variances. The trick we will use is to make the mean and variance be functions
of an underlying continuous variable. The function the VAE uses is gg. For notational
convenience, we decompose this function into gly and geZ to separately model the means and
variances of the Gaussians in the infinite mixture. Next we need a continuous domain to
integrate our mixture over, and, as a simple choice, we will use the unit Gaussian distribution.
Then our infinite mixture can be described as:

po(x) = /N(x; 94 (z), g5 (z)) N(2;0,1) dz 4 VAE hypothesis space (1.6)
z ——

po (x|z) Pz(2)

Notice that this equation — an infinite mixture of Gaussians parameterized by a function g
— has exactly the same form as the marginal likelihood Eqn. 1.4. What we have done is
model an infinite mixture as an integral that marginalizes over a continuous latent variable.

You can think about this as transforming a base distribution p, to a modeled distribution
pe by applying a deterministic mapping gg and then putting a blip of Gaussian probability

1.3. VARIATIONAL AUTOENCODERS)

around each point in the range of this mapping. If you sample a few of the Gaussians in this
infinite mixture, they might look like this:

Infinite mixture of Gaussians (VAE

Finite mixture of Gaussians

Parameters: {w;, pi, i}, Parameters: 0

po(x) = / P (BN (x; 61 (2), 63(2))dz

k
Do (X) = Z ’wiN(X; His E’L)
i=1

While we have chosen Gaussians for pg(x|z) and p,(z) in this example, VAEs can also be
constructed using other base distributions, even complicated ones. For example, we could
make an infinite mixture of the autoregressive distributions we saw in Chapter ?7?7. In this
sense, mixture models are meta-models, and their components can themselves be any of the
density models we have learned about in this book, including other mixture models.

1.3.3 Optimizing VAEs

With the objective and hypothesis given above, we can now fully define the VAE learning
problem:

0* = argmin L({xP}N 0) (1.7)
0
N po(xV|2) pa(2)
- —_—N—
= argeminz log /N(X(l);g{’;(z), 97 (z)) N (z;0,1) dz (1.8)
i=1 z

po (x(9))

Trick #1: Approximating the objective via sampling The integral for pg(x(i)) does
not necessarily have a closed form since gy may be an arbitrarily complex function. Therefore,
we need to approximate this integral numerically. The first trick we will use is a Monte Carlo
estimate of this integral:

po(x) = / po(x|2)pa (2)dz (19)
= IEZsz(Z) [pO(X‘Z)} (1-10)
1 M , ,
~ o> polxia), 20 ~p, (1.11)
=1

We could stop here, as the learning problem is now written in a closed differentiable form:

po(xVz;))

N M
1 - . -
0" = argmin — > log > N(xD; gh(z)), g5 (21
pin iy D103 N).)

(1.12)

As long as gy is a differentiable neural net, we can proceed with optimization via backprop.
In practice, on each iteration of backprop, we would collect a batch of random samples

Wait, a whole section on
optimization? Didn’t this
book say that
general-purpose
optimizers (like backprop)
are sufficient in the deep
learning era? Yes. But
only if you can actually
compute the objective and
its gradient. The issue
here is that the VAE’s
objective is intractable.
Its exact computation
requires integrating over
an infinite set of deep net
forward passes. The
difficulty of optimizing
VAEs lies in the difficulty
of approximating this
intractable objective.
Once we derive our
approximation,
optimization again will be
easy: just apply backprop
on this approximate loss.

6 CHAPTER 1. GENERATIVE MODELING MEETS REPRESENTATION LEARNING

{X(i)}ﬂ1 ~ Paata from the training set and a batch of random latents {z(j)}]B:21 ~ p, from
the unit Gaussian distribution (with B; and Bs being batch sizes). Then we would pass each
of the z samples through our net gy, which yields a Gaussian under which we can evaluate
each x sample. After evaluating and summing up the log probabilities, we would run a
backwards pass to update the parameters 6.

Below we show what this process looks like at three checkpoints during training. Here
we use an isotropic Gaussian model, i.e. we parameterize the covariance as ¥ = oI, where
o = g7 (z) is a scalar.

Iter 200

Training iters

Iter 1000

Figure 1.2: Fitting an infinite mixture of Gaussians whose means and variances are param-
eterized by a generator function gg.

Trick #2: Efficient approximation via importance sampling The above works de-
cently for modeling low-dimensional distributions. Unfortunately, this approach does not
scale well to high-dimensions. The reason is that in order for our Monte Carlo estimate
of the integral to be accurate, we may need many samples from p,, and the higher the
dimensionality of z, the more samples we will typically need.

Can we come up with a more efficient way of approximating the integral in Eqn. 1.97
Let’s start by writing out the sum from Eqn. 1.11 more explicitly:

po(x) ~ %(pg(xh(l)) +pg(x|z(2)) + pg(x|z(3)) +...) (1.13)

In general, some of the terms pg(x|z(j)) will be larger than others. In fact, in our example in
Figure 7?7, most of these terms are near zero. This is because, to maximize likelihood, the
model spread out the Gaussians so that each places high density on a different part of the
data distribution. A datapoint x will only have substantial probability under the Gaussians
whose means are near x. Consider the example below, where we are trying to esimate the
probability of the point x (blue circle):

1.3. VARIATIONAL AUTOENCODERS 7

QR

The mixture components are shaded according to the probability they assign to x. Almost
all are so far from x that we have:

po(x) ~ %(0 +po(x|z®) +0+..) (1.14)

If we had only sampled z(?), we would have had almost as good an estimate!

This brings us to the second trick of VAE’s: when approximating the likelihood integral for
po(X), try to only sample z’s that place high probability on x, i.e. those z's for which py(x|z)
is large. Then, a few samples will suffice to well approximate the entire expectation. This
trick is called importance sampling. It is a general trick for approximating expectations.
Rather than sampling z(Y) ~ p,, we sample from some other density z(* ~ ¢, and multiply

by a correction factor Z :E:; to account for the fact that we are sampling from a biased

distribution:
po(x) =Epmp, {pg(x|z)} = /zpz(z)pg(x|z)dz = /zqz(z)zzgipg(xz)dz (1.15)
Pz(2)
=Ew%bxgm@uﬂ (1.16)

Using the intuition we developed above, the distribution ¢ we would really like to sample
from is the one whose samples maximize pg(x|z). It turns out that the optimal distribution
is ¢* = pp(Z|x). This distribution minimizes the expected error between a Monte Carlo
estimate of the expectation and its true value (i.e. minimizes the variance of our Monte
Carlo estimator). The intuition is that pg(Z|x) is precisely a prediction of which z’s are
most likely to have generated the observed x. The optimal importance sampling way to
estimate the likelihood of a datapoint will therefore look like this:

(J
Z Pz Z)| ol x|z(J)) < Optimal importance sampling (1.17)
(zV)|x)

7(9) ~p9(Z\x)

Visually, rather than sampling from all over p, and wasting samples on regions that places
nearly zero likelihood on the data, we focus our sampling to just the region that places high
likelihood on the data, and can get then away with far fewer samples to well approximate
the data likelihood:

See [Owen 2013], Chapter
9.1 for a proof that

0*(2) |ps(X]2) p4 (),
from which it then follows
that

4"(2) o po(x[2)p (2) =
p@(xv Z) X p‘g(Z‘X),
yielding our result

Remember, we have
defined simple forms for
only pp(X|z) and p, —
both are Gaussians — but
this does not mean
po(Z|x) has a simple
form.

The name “variational”
comes from the “calculus
of variations”, which
studies functionals
(functions of functions).
Integrals of probability
densities are functionals.
Variational inference is
commonly (but not
always) used to
approximate densities
expressed as the integral
of some other densities,
hence functionals, hence
the name “variational”.

8 CHAPTER 1. GENERATIVE MODELING MEETS REPRESENTATION LEARNING

Trick #3: Variational inference to approximate the sampling distribution Now
we know what distribution we should be sampling z’s from: pp(Z|x). The only remaining
problem is that this distribution may be complicated and hard to sample from. Sampling
from arbitrary distributions is a standard topic in statistics, and many algorithms have been
proposed, including the MCMC methods we encountered in previous chapters. VAE’s use a
strategy called variational inference.

The idea of variational inference is to approximate an intractable density p by finding the
nearest density in a tractable family g, parameterized by . In VAE’s, we approximate our
ideal importance density pg(Z|x) with a gy in a family we can efficiently sample from — the
most common choice is to again use a Gaussian, conditioned on x: ¢y = N(f};(x), ff(x))
fy is a function that maps from x to parameters of a distribution over z — in other words,
fy is a probabilistic encoder!

Encoder

It will turn out that f indeed plays the role of the encoder in the VAE, while g plays the
role of the decoder.

We want ¢y to be the best approximation of py(Z|x), so our goal will be to choose the
¢y that minimizes the KL-divergence between these two distributions (we could have chosen
other divergences or notions of approximation, but we will see that using KL yields some
nice properties). We will call the objective for g, as J, and will rewrite it as follows:

Jq = KL(qy (Z]x) || po(Z|%)) (1.18)
Ezqs (1% [108 @y (2]x) —log p(2x)] (1.19)

= Euq,(z)x) [10g 4 (z|x) — log pe(x|z) + log p,(z) — log pa(x)] (1.20)

= By, (2x)[108 ¢4 (2]%) — log pe(x|z) + log p,(z)] — log ps(x) (1.21)

The last line follows from the fact that log pg(x) is a constant w.r.t. the distribution we are
taking expectation over.

The learning problem for g is to optimize J, w.r.t. parameters ¢. Notice that log pg(x)
is constant w.r.t. these parameters, so we have that:

Y* = argmin J, () (1.22)
P

— log py(x|2) + log p,(2)] (1.23)

J

= argwmin E,~q, (z)x) [10g gy (2]X)

Here we have defined a new cost function, J, whose minimizer w.r.t. v is the same as the
minimizer for Jj.

Now, let us now recall our learning problem for py, which is to maximize data log likeli-
hood. Using importance sampling to estimate data likelihood (Eqn. 1.16), and using gy as
our sampling distribution, we have that the objective for py is to minimize the following cost
Jp wr.t. 6

(1.24)

pa(2)
Jp = — log]EZqu(Z|x) [)pg(X|Z)

qy (z|x

0" = argmin J,(0) (1.25)
0

1.3. VARIATIONAL AUTOENCODERS 9

We now have a differentiable objective for both) and 6; the objective for 1) is expressed as an
expectation and can be optimized by taking a Monte Carlo sample from that expectation.
We could also try using Monte Carlo to approximate the objective for 6, but this would
yield a biased esimator of 8, since Equation 1.24 has the log outside the expectation. That
might be okay (as the number of samples N goes to infinity, the bias goes to zero), but we
can do better. To get around this issue, VAEs adopt the following strategy: rather than
minimizing J, w.r.t. pg, they minimize an upper-bound to J,, which is expressed purely
as an expectation and yields unbiased Monte Carlo estimates. The particular upper-bound
used is in fact J — the same objective as we used for optimizing v in Eqn. 1.23! The fact
that J is a upper-bound on J, follows from Jensen’s inequality:

Pa(2)
Jp = —10gEyq, (z)x) {mpg(xﬁ)} (1.26)
(2 . .
< —Eugy(zix) {log(qi)(;i)pg(xh))} < Jensen’s inequality (1.27)
=Ezng,(2x) {10g gy (z|x) — log pe(x|z) — log p,(z) (1.28)
_J (1.29)

This way our learning problem for both 6 and 1 share the same objective (which saves
computation) and can be stated simply as:

0*,y* = argmin J (6, ¢)
0,¢

(1.30)

Connection to autoencoders You may have noticed that in the previous sections we
made use of both an encoder fy, (which parameterizes g, (Z|x)) and a decoder gy (which
parameterizes pg(X|z)) — it looks like we are using the two pieces of an autoencoder but
what’s the exact connection? To see it, we need to write out the objective J in more explicit
detail. We will derive the connection for a simple VAE on 1D data with 1D latent space, i.e.
reR, zeR.

J = Eevyy(zi) | l08 0y (2|z) — log po(w2) — logp.(2)] (1.31)
= Eogy (21|~ 108Po(al2)| +KL(qy (Z]2) || p-(2) (1.32)
= By (zin)| ~ 108N (539 (2),65 (2))| — KL(gu(Z]0) [N(O.1)) (1.33)

Computing this expectation requires drawing samples from gy (Z|z). We can draw such a
sample as z = fy/(z) + €f] () with e ~ N(0,1). This allows rewriting the expectation as:

T = Eeonion [~ los (w5 (2),08 (2))] ~ KL(au (Zle) | M(0,1) (1.34)
= Eeonon |~ 108N (s g5 (F4(2) + €10 08 () + e/ @)

KL (719 | N0, 1) (1.35)

—Bewion [log = - —] Z [MO (130)

1= gy (fy(x) + f7(x)),

noisy autoencoder

o= g8 (f4(x) + ef7(@)))

What this shows is that to compute the VAE’s objective, you simply run an autoencoder
with noise added to the bottleneck. The cost function is then the reconstruction error (same

log & >, @; is not an
unbiased estimator of
log E[z], hence a Monte
Carlo estimate is not the
best choice for Equation
1.24.

We can actually be more
precise about the gap
between J,, and J:

J—Jp = KL(qy(Z %) || P2),
which is strictly
non-negative (exercise: do
the algebra to show this).
—J is often referred to as
the Evidence Lower
Bound or ELBO.

This is known in the
literature as the
reparameterization
trick

10CHAPTER 1. GENERATIVE MODELING MEETS REPRESENTATION LEARNING

as with regular autoencoders) weighted by a term related to the variance of the noise added
and also with an additional KL-divergence term to squish the latent distribution toward the
unit Gaussian.

To train a VAE we normally are not just fitting a single x but maximizing the likelihood
of a dataset {x("}Y, so the cost we optimize is >, J(x(¥),0,4). Optimization of VAE
proceeds as follows:

e Sample one or more x ~ {x(W}N

Encode the data with a forward pass through fy

For each datapoint, create one or more noisy latent codes using the distribution pa-
rameterized by the encoder

Decode the data by passing the noisy latent codes through the gy

e Compute the losses and backprop to update 6 and v

In most implementations of VAEs, only a single sample from the latent distribution is used
for each datapoint on each iteration of backprop.

Three checkpoints of optimizing a VAE are shown below. As in the infinite mixture of
Gaussians example above, we again assume an isotropic Gaussian model for the decoder, and
here also assume that model for the encoder:

o qy(2) Po(x)
= B V(@ £5 (%), fO)] || = Bap, IV (x: 95 (2), 95(2))]

»

Training iters

1.3.4 Do VAEs learn good representations?

One perspective on VAEs is that they are a way to train a generative model py. From this
perspective, the encoder is just scaffolding for learning a decoder. However, the encoder can
also be useful as an end in itself, and we might instead think of the decoder as scaffolding for
training an encoder. This was the perspective presented by autoencoders, after all, and the
VAE encoder comes with the same useful properties: it maps data to a low-dimensional latent
code that preserves information about the input. In fact, from a representation learning
perspective, VAE’s even go beyond autoencoders. Not only do VAE’s learn compressed

1.3. VARIATIONAL AUTOENCODERS 11

embedding, the embeddings may also have other desirable properties depending on the prior
pz- For example, if p, = N(0, 1), as is common, then the loss encourages that the dimensions
of the embedding are independent, a property called disentanglement.

Disentanglement means that we can vary one dimension of the embedding at time, and
just one independent factor of variation in the generated images will change. For example,
one dimension might control the direction of light in a scene and another dimension might
control the intensity of light.

Example: learning a VAE for rivers Suppose we have a dataset of aerial views of
rivers. We wish to fit this data with a VAE so that 1) we can generate new rivers and 2) we
can identify the underlying latent variables that explain river appearance. In this example
we will use data for which we know the true data generating process — we will use a python
script that procedurally synthesizes cartoon images of rivers given input noise (this is a more
elaborate version of the script we saw in Algorithm ?? of Chapter ??). The script takes in
random values that control the attributes of the scene — the grass color, the heading of the
river, the number of trees, etc — and generates an image with these attributes:

z; ~ Bernoulli(0.5) (River turns)

zy ~ Normal(u;,%1) (Grasscolor) — | (zenerator
z3 ~ Unif (0, 10) (Number trees)

Training a VAE on this data learns to recreate the generative process with a neural net
(rather than a python script) and maps zero-mean unit-variance Gaussian noise to images
(rather than taking as input the noise types the script uses):

Data

Learner | — fu, go

Training

Samples

Sampling
N
1
1

Did the VAE uncover the “true” latent variables that generated the data, i.e. did it
recover latent dimensions corresponding to the attribute values that were the inputs to the

A formal name for this
issue is the
non-identifiability of
the true parameters that
generated a dataset.

12CHAPTER 1. GENERATIVE MODELING MEETS REPRESENTATION LEARNING

python script? We can examine this by generating a set of images that walk along two latent
dimensions of the VAE’s z-space:

“Grass color”

“River curvature”

One of the latent dimensions seems to control the grass color, and another controls the
river curvature! These two latent dimensions are disentangled in the sense that varying
the latent dimension that controls color has little effect on curvature and varying the latent
dimension that controls curvature has little effect on color. Indeed, grass color was one of the
attributes of the true data generating process (the python script), and the VAE recovered it.
Interestingly, however, there was no single input to the script that controls the overall river
curvature, instead the curves are generating by a vector of Bernoulli variables that rotate
the heading left and right as the river extends (using the same algorithm as in Algorithm
?? of Chapter ??). The VAE has discovered a latent dimension that somehow summarizes
a more global mode of behavior — bend left or bend right — than is explicit in the python
script. It is important to realize that VAE’s, and most representation learning methods, do
not necessarily recover the true causal mechanisms that generated the data but rather might
find other mechanisms that can equivalently explain the data.

To summarize this section, we have seen that a VAE can be considered two things:

e An efficient way to optimize an infinite mixture of Gaussians generative model.

e A way to learn a low-dimensional, disentangled representation that can reconstruct the
data.

1.4 Generative adversarial networks are representation
learners

In Chapter ?7? we covered GANs, which, like VAEs, train a mapping from latent variables
to synthesized data, g : z — y. Do GANSs also learn meaningful and disentangled latents?

To see, let us repeat the experiment of examining latent dimensions of a generative model,
but this time with GANs. Here we will use a powerful GAN, called BigGAN [Brock et al.
2019], that has been trained on the ImageNet dataset [Russakovsky et al. 2015]. Here are
images generated by walking along two latent dimensions of this GAN:

1.4. GENERATIVE ADVERSARIAL NETWORKS ARE REPRESENTATION LEARNERS13

“Background color”

“Bird orientation”

Just like with the VAE trained on cartoon rivers, the GAN has also discovered disen-
tangled latent variables; in this case they seem to control background color and the bird’s
orientation.

This makes sense: structurally, the GAN generator is very similar to the VAE decoder.
In both cases, they map a low-dimensional random variable z to data, and typically p, ~
N(0,1). That means that the dimensions of z are a priori independent (disentangled). In
both models the goal is roughly the same: create synthetic data is has all the properties of real
data. It should therefore come as no surprise that both models learn latent representations
with similar properties. Indeed, these are just two examples of a large class of models that
map low-dimensional latents from a simple (high entropy) distribution to high-dimensional
data from a more structured (low entropy) distribution, and we might expect all models in
this family to lead to similarly useful representations of the data.

14CHAPTER 1. GENERATIVE MODELING MEETS REPRESENTATION LEARNING

Bibliography

A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural
image synthesis. International Conference on Learning Representations, 2019.

D. P. Kingma, M. Welling, et al. An introduction to variational autoencoders. Foundations
and Trends® in Machine Learning, 12(4):307-392, 2019.

A. B. Owen. Monte Carlo theory, methods and examples. 2013.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. Interna-
tional journal of computer vision, 115(3):211-252, 2015.

15

