Chapter 1

(Generative models

Generative models perform (or describe) the synthesis of data. Recall the image classifier
from Chapter ?7:

A generative model does the opposite:

Fish — | Generator | —

Whereas an image classifier is a function f : X —), a generative model is a function in
the opposite direction g : Y — X. Things are a bit different in this direction. The function f
is many-to-one: there are many images that all should be given the same label “fish”. The
function g, on the other hand, is one-to-many: there are many possible outputs for any
given input. Generative models handle this ambiguity by making g a stochastic function.
One way to make a function stochastic is to make it a deterministic function of a stochastic
input: g: Zx)Y — X, with z ~ p(z), z € Z. Often, we use Gaussian noise as the stochastic
input: p(z) = N (0,1):

Fish — | Generator | —

!

z ~ N(0,1)

Sometimes we wish to simply make up data from scratch — in fact this is the canonical
setting in which generative models are often studied. To do so, we can simply drop the

Corresponds to this
graphical model:

What if our model just
memorizes all the
training examples and
generates random draws
from this memory? This
section focuses on the

2 CHAPTER 1. GENERATIVE MODELS

dependency on the input label y. This yields a procedure for making data sampled as:

2~ p(2) (L1)
% = g(z) (1.2)

We call this an unconditional generative model because it is model of the unconditional
distribution p(x). Generally we will refer to unconditional generative models simply as
“generative models” and use the term conditional generative model for a model of any
conditional distribution p(x|y). Conditional generative models will be the focus of Chapter
?77; in the present chapter we will restrict our attention to unconditional models.

Why bother with (unconditional) generative models, which make up random synthetic
data? At first this may seem a silly goal. Why should we care to make up images from
scratch? One reason is content creation; we will see other reasons later, but content creation
is a good starting point. Suppose we are making a video game and we want to automatically
generate a bunch of exciting levels for the player the explore. We would like a procedure
for making up new levels from scratch. Such procedural graphics have been successfully
used to generate random landscapes for game levels [?]. Suppose we want to add a river
to a landscape. We need to decide what path the river should take. A simple program for
generating the path could be “walk an increment forward, flip a coin to decide whether to
turn left or right, repeat.” Here is that program in pseudocode:

Algorithm 1: Generative model of images of rivers

1 Input: Random vector of coin flips z = [zq, ..., zn] with each z; € {0,1}
2 Output: Picture of a river

3 start drawing at origin with heading = 90°
4 fori=1,...,N do

5 extend line 1 unit in current heading direction
6 if z; == 1 then

7 L rotate heading 10° to the right

8 else

9 L rotate heading 10° to the left

Here are a few rivers this program draws:

~)~ S

This program relies on a sequence of random coin flips to generate the path of the river.
In other words, the program took a sequence of flips as input, and converted this “noise”
to a image of the path of the river. It’s exactly the same idea as we described above for
generating images of fish, just this time the generator is a program that makes rivers:

This generator was written by hand. Next we will see generative models that learn the
program that synthesizes data.

1.1 Learning generative models

1.1.1 Data generators

1.1. LEARNING GENERATIVE MODELS 3

~ [~

z ~ Bernoulli(0.5) ———p Generator | ——» \L

How can we learn to synthesize images that look realistic? The machine learning way to
do this is to start with a training set of ezamples of real images, {x(V}¥,. Recall that in
supervised learning, an “example” was defined as an {input, output} pair; here things are
actually no different, only the input happens to be the null set. We feed these examples to
a learner, which spits out a generator function. Later, we may query the generator with
random noise source z to produce novel outputs, a process called sampling from the model:

2

‘3 Data

o . Learner —> Generator

g {X(l)}zN:l

=

¥

= a Samples
z — enerator N

g {X()}i\;

7))

Figure 1.1: Learning and using a generator.

The objective of the learner is to create a generator that produces synthetic fake data,
{xO}N | that “looks like” the real data, {x(")}XY . There are a lot of ways of define “looks
like” and they each result in a different kind of generative model. Two examples are:

1. Fake data looks like real data if matches the real data in terms of certain marginal
statistics, e.g., it has the same mean color as real photos, or the same color variance,
or the same edge statistics, etc.

2. Fake data looks like real data if it has high probability under a density model fit to the
real data.

The first approach is the one we saw in Chapter 7?7 on statistical image models, where fake
textures were made that had the same filter response statistics as a real training example.
This approach works well when we only want to match certain properties of the training
data. The second approach, which is the main focus of this chapter, is better when we want
to produce fake data that matches all statistics of the training examples.

To be precise, the goal of the deep generative models we consider in this chapter is to
produce fake data that is identically distributed as the training data, i.e. we want X ~ pgata
where pgata is the true process that produced the training data.

Learning data generators There are two general approaches to learn data generators:
1. Direct approach: learn the function G : Z — X.

2. Indirect approach: learn a function F : X — R and generate samples by finding values
for x that score highly under this function.

In practice, we may not
be able to match all
statistics, due to limits of
the model’s capacity.

The vocab for these
different approaches can
be confusing. In the
generative modeling
literature, method #1 is
called an implicit model
since the probability
density is never explicitly
represented. However,
this usage contrasts with
the more usual use of
“implicit functions” in
math: y = f(x) is explicit
while

y = argmin, F(z,y) is
“implicit” as the output
is the implied result of an
optimization procedure
over I, rather than the
direct result of running a
function f. Approach #2
to generative modeling is
“implicit” in that the
output is a sampling
procedure over a density
or energy function.

4 CHAPTER 1. GENERATIVE MODELS

An example of the direct approach is the Generative Adversarial Network that we will
see later in this chapter. First, however, we will describe the more classical, indirect approach
in the following sections. Indirect approaches come in two general flavors, density models
and energy models, which we describe next.

1.1.2 Density models

Some generative models not only produce generators but also yield a probability density
function py, fit to the training data. This density function may play a role in training the
generator (e.g., we want the generator to produce samples from py) or the density function
may be the goal itself (e.g., we want to be able to estimate the probability of datapoints in
order to detect anomalies).

In fact, some generative models only produce a density py and do not learn any explicit
generator function. Instead, samples can be down from py using procedures such as Markov
Chain Monte Carlo (MCMC).

Learning density models The objective of the learner for a density model is to output
a density function py that is as close as possible to pgata. How should we measure closeness?
We need to define a divergence between two distributions, D, and then solve the following
optimization problem:

arg min D(p9 5 pdata) (13)

Po
A problem is that we do not actually have the function pgata, we only have samples from
this function, X ~ paata. Therefore, we need a divergence D that measures the “distance”!
between pg and pgaza while only accessing samples from pgaza- A common choice is to use
the “forward” KL-divergence, which is defined as follows:

pj = arg min KL (passas 7o) (1.4)
Po
=argminE..,,.. [log M] (1.5)
Po Paata(X)
= arg min EX’\’pdata [log Po (X)] -]Eprdata [1Og Pdata (X)] (1 6)
Po
= argminEx.,,...[log pe(x)] <dropped 2nd term since no dependence on pg (1.7)
Po
| X
A2 arg min N Z log po(x™) (1.8)

Po i=1

where the final line is an empirical estimate of the expectation by sampling over the training
dataset {x(1Y . Equation 1.7 is the expected log likelihood of the training data under the
model’s density function. Maximizing this objective is therefore a form of max likelihood
learning. Pictorially we can visualize the max likelihood objective as trying to push up the
density over each observed datapoint:

Remember that a probability density function (pdf) is a function py : X — [0, 00) with
[po(x)dx = 1 (normalized). To learn a pdf, we will typically learn the parameters of a
family of pdfs. All members of the family are normalized nonnegative functions; this way we
do not need to add an explicit constraint that the learned function have these properties, we
are simply searching over a space of functions all of which have these properties. This means
that whenever we push up density over datapoints, we are forced to sacrifice density over
other regions, so, implicitly, we are removing density from places where there is no data, as
indicated by the red regions in Figure ?7.

IThe divergence need not be a proper distance metric, and often is not; it can be non-symmetric, where
D(p,q) # D(q,p), and need not satisfy the triangle-inequality. In fact, a divergence is defined by just two
properties: non-negativity and D(p,q) =0 <= p=gq.

1.1. LEARNING GENERATIVE MODELS)

po(x) po()

Figure 1.2: Fitting a max likelihood density model to data. The gray region holds a constant
amount of mass — think of it as piles of dirt. To increase the amount of dirt at the locations
of the green arrow you must remove dirt from other regions, indicated in red.

In the next section we will see an alternative approach where the parametric family we
search over need not be normalized.

1.1.3 Energy-based models

Density models constrain the learned function to be normalized, i.e. [ps(x)dx = 1. This
constraint is often hard to realize. One approach is to learn an unnormalized function

Ey, then convert it to the normalized density py = %, where Z(0) = [, e FeX)dx is

the normalizing constant. Z(f) can be very expensive to compute and often can only be
approximated.

Energy-based models (EBMs) address this by simply skipping the step where we
normalize the density, and letting the output of the learner just be Ey. Even though it is not
a true probability density, Fy can still be used for many of the applications we would want
a density for. This is because we can compare relative probabilities with Fy:

e_Ee (xl)

= e—Ee(Xz) (19)

po(x1) _ e P00/Z(0)
po(x2) e Polx2)/Z(9)

Knowing relative probabilities is all that is required for sampling (via MCMC), for outlier
detection (the relatively lowest probability datapoint in a set of datapoints is the outlier),
and even for optimizing over a space of of data to find the datapoint that is max probability
(because arg max,¢y po(x) = arg max, ¢y —Fy(x)). To solve such a maximization problem,
we might want to find the gradient of the log probability density w.r.t. x; it turns out this
gradient is identical to the gradient of —Fy w.r.t. x!

e—Fo(x)
Vi logpg(x) = Vy log O (1.10)
= —VxEy(x) — Vxlog Z(0) 1.11)
= —VxEy(x) 1.12)

In sum, energy functions can do most of what probability densities can do, except that they
do not give normalized probabilities. Therefore, they are insufficient for applications where
communicating probabilities is important for either interpretability or for interfacing with
downstream systems that require knowing true probabilities.

Learning energy-based models Learning the parameters of an energy-based model is
a bit different than learning the parameters of a density model. In a density model, we
simply increase the probability mass over observed datapoints, and, because the density is
a normalized function, this implicitly pushes down the density assigned to regions where
there is no observed data. Since energy functions are not normalized, we need to add an
explicit “negative” term to push up energy where there are no datapoints, in addition to
the positive term of pushing down energy where the data is observed. One way to do so

The parametric form

—Ep . .
e
WIS sometimes referred

to as a Boltzmann or
Gibbs distribution.

Notice that Z is a
function of model
parameters € but not of
data x, since we integrate
over all possible data
values.

A case where a density
model might be
preferable over an energy
model is a medical
imaging system that
needs to communicate to
doctors the likelihood
that a patient has cancer.

Here we use a very useful
identity from the chain
rule of calculus, which
appears often in machine
learning;:

V., log f(x) = f(lz) V. f(z)

6 CHAPTER 1. GENERATIVE MODELS

is called contrastive divergence [Hinton 2002]. On each iteration of optimization, this
method modifies the energy function to decrease the energy assigned to samples from the
data (positive term) and to increase the energy assigned to samples from the model (i.e.
samples from the energy function itself; negative term):

Ey (:z:) Ey (.L)
2> . W .

Figure 1.3: Fitting a max likelihood energy function to data, using contrastive diver-
gence [Hinton 2002].

Once the energy function perfectly adheres to the data, samples from the model are
identical to samples from the data and the positive and negative terms cancel out. This
should make intuitive sense because we don’t want the energy function to change once we have
perfectly fit the data. It turns out that mathematically this procedure is an approximation
to the gradient of the log likelihood function. Defining pg = %, start by decomposing the
gradient of the data log likelihood into two terms, which, as we will see, will end up playing
the role of positive and negative terms:

e—Eo(x)
Vo Exnpeaa 108 P9 (X)] = Vo Exnp,,., [l0g T] (1.13)
= —Expea Vo Lo(x)] — Vo log Z(0) (1.14)

The first term is the positive term gradient, which tries to modify parameters to decrease
the energy placed on data samples. The second term is the negative term gradient — here it
appears as an intractable integral, so our strategy is to rewrite it as an expectation, which
can be approximated via sampling:

1
—V,1 = 1.

V@ og Z(Q) Z(@) V@Z(g) (15)

1
7V9/6_E9(x)dx < definition of Z 1.16
70"), (1:16)

1
= — [Vye Foe™gx <4 exchange sum and grad (1.17)

2(0) J.

1
=70 / e BeI7y By (x)dx (1.18)
efE.e(x)v Ey(x)d 1.19
- [G voExax (1.19)
= — | po(x)VyEy(x)dx < definition of pg (1.20)
= —Exp, [VoFEo(x)] < definition of expectation (1.21)

Plugging Eqn 1.21 back into Eqn 1.14, we arrive at:

V6B posca 108 20 (X)] = —Excwponea [Vo B ()] + Excopy [Vo Eio (x)] (1.22)

Both expectations can be approximated via sampling: defining x(~ pgara and (2 ~ py,

1.2. TYPES OF GENERATIVE MODELS 7

and taking N such samples, we have:

N N
1 1 »
~Epaea [V Bo)] + Exnpg [VoEo ()] & == > Vo By(x)) + =Y " VyEp(x?) (1.23)

==V Z(—Eg(x(i)) + Ep(x™)) (1.24)

The last line should make clear the intuition: we establish a “contrast” between data samples
and current model samples, then update the model to decrease this contrast, bringing the
model closer to the data. Once x(?) and %) are identically distributed, this gradient will
be zero (in expectation) — we have perfectly fit the data and no further updates should be
taken.

Under our formalization of a learning problem as an objective, hypothesis space, and
optimizer, contrastive divergence is an optimizer; it’s an optimizer specifically built for max
likelihood objectives over energy functions. Contrastive divergence tells us how to approx-
imate the gradient of the likelihood function, which can then be plugged into any gradient
descent method.

1.2 Types of generative models

Some generative models give density or energy functions, others give generator functions,
and still others give both. We can summarize all these kinds of models with the following
learning diagram:

Density function Energy function
Data po: X —[0,00) Ep: X - R
{}N ~—> | Generative modeling | —>

Generator

Gg:Z—)X

It’s worth noting a special property of generative models that learn a generator Gy. The
“noise” z input to the generator acts as latent variables that control the properties of the
generated image. Changing these variables can change the generated image in meaningful
ways — we will explore this idea in greater detail in the next two chapters. In contrast, density
and energy models do not have latent variables that directly control generated samples?.

Some of the generative models we will describe in this chapter and the next are catego-
rized, along these dimensions, in the table 1.1.

Generative models can also be distinguished according to their objectives, hypothesis
spaces, and optimization algorithms. Indeed, some classes of model, such as autoregressive
models refer to just a particular kind of hypothesis space, whereas other classes of model,
such as variational autoencoders, are much more specific in referring to the conjunction of
an objective, a general family of hypothesis spaces, and a particular optimization algorithm.

1.2.1 Gaussian density models

One of the simplest and most useful density models is the Gaussian distribution, which, in
1D is:

1
po(z) = Ee—@—‘h)?/(?"z) (1.25)

2The sampling algorithm that draws samples from a density/energy function necessarily does depend on
“noise” factors that control properties of the generated samples, but this dependency is typically much less
explicit than the relationship between noise inputs and image outputs in a generator function.

For 1D Gaussians

\/21r792' We prefer to
write it as Z to
emphasize its structural
role as a normalization
constant. Usually we will
not be explicitly
evaluating normalization
constants, and will not
require knowing their
analytical form.

7 =

8 CHAPTER 1. GENERATIVE MODELS
Method Latents? Density? Generator?
Autoregressive models X v slow
Diffusion models high-dim X slow
GANs v X v
VAEs v lower-bound v
Energy-based models X unnormalized X

Table 1.1: Three desirable properties in a generative model. No method achieves all three
(without caveats). VAEs and GANs are good at representation learning (i.e. at finding a
low-dimensional latent space). Autoregressive models are great if you want to estimate the
likelihood of your data points (e.g., for anomaly detection). Energy-based models can be an
especially efficient way to model an unnormalized density.

This density has two parameters 6; and 6, which are the mean and variance of the distri-

bution. The normalization constant Z ensures that the function is normalized. This is the
typical strategy in defining density models: create a parameterized family of functions such
that any function in the family is a normalized. Given such a family, we search over the
parameters to optimize a generative modeling objective.

For density models, the most common objective is max likelihood:

N
i paaea 108 Do (2 Z ogpo (") (1.26)
For a 1D Gaussian, this has a simple form:
N
Zlog e (@ =01)?/(262) _ —log(Z Z G) —6,)2/(26,) (1.27)

Optimizing w.r.t. 6; and 65 could be done via gradient descent or random search, but in this
case there is also an analytical solution we can find by setting the gradient to be zero. For
07 we have:

0—logZ + % L, (2 — 07)?/(265)

39* =0 (1.28)
¥ 22 /(203) =0 (1.29)
Z 2 72(9; =0 (1.30)
1= 1=1
1 N
e (@)
N ;x (1.31)

1.2. TYPES OF GENERATIVE MODELS 9

For 03 we need to note that Z depends on 65 and in particular notice that 8_81+§Z = Qé;:
0 —log Z + 3 ity (=) — 07)°/(265)
=0 (1.32)
003
1 1

— =N 9oz _ 902 /(29)2 = 1.

203 N; (2 — 07)2/(205)* = 0 (1.33)
N
* - (i) *\2
203 N;m 07)2 =0 (1.34)
1o,

0; =~ Z(x(’) —67)? (1.35)

You might recognize the solutions for 7 and 65 as, repsectively, the empirical mean and
variance of the data. This makes sense: we have just shown that to maximize the probability
of the data under a Gaussian, we should set the mean and variance of the Gaussian to be
the empirical mean and variance of the data.

This fully describes the learning problem, and solution, for a 1D Gaussian density model.
We can put it all together in the learning diagram below:

1D Gaussian density model

Objective
% 2isy log po (™)

Hypothesis space

pa(q;) = %e_(x_gl)z/@%)

Data

{2V — — Do

Optimizer
* N i
01 = % >izt)
* N] *
03 = % Zi:1($(z) —07)?

Gaussian density models are just about the simplest density models one can come up with.
You may be wondering, do we actually use them for anything in computer vision, or are they
just a toy example? The answer is that yes we do use them, and all the time. For example,
in least-squares regression, we are simply fitting a Gaussian density to the conditional prob-
ability p(y|x). If we want a more complicated density, we may use a mixture of Gaussians,
which we will encounter in the next chapter. It’s useful to get comfortable with Gaussian
fits because 1) they are a subcomponent of many more sophisticated models, and 2) they
showcase all the key components of density modeling, with a clear objective, a parameterized
hypothesis space, and an optimizer that finds the parameters that maximize the objective.

1.2.2 Autoregressive density models

A single Gaussian is a very limited model, and the real utility of Gaussians only shows up
when they are part of a larger modeling framework. Next we will consider a recipe for
building highly expressive models out of simple ones. There are many such recipes and the
one we focus on here is called an autoregressive model.

The idea of an autoregressive model is to synthesize an image pixel by pixel. Each new
pixel is decided on based on the sequence already generated. You can think of this as a
simple sequence prediction problem: given a sequence of observed pixels, predict the color
of the next one. We use the same learned function f to make each subsequent prediction:

Here we have a partially
synthesized image. The
red pixels are the
remaining pixels to

10 CHAPTER 1. GENERATIVE MODELS

- R RN RN
<afE+E5
g o B

These models can be easily understood by first considering the problem of synthesizing one
pixel, then two, and so on. The first observation to make is that it’s pretty easy to synthesize
a single grayscale pixel. Such a pixel can take on 256 possible values (for a standard 8-bit
grayscale image). So it suffices to use a categorical distribution to represent the probability
that the pixel takes on each of these possible values. The categorical distribution is fully
expressive: any possible pmf over the 256 values can be represented with the categorical
distribution. Fitting this categorical distribution to training data just amounts to counting
how often we observe each of the 256 values in the training pixels, and normalizing by the
total number of training pixels. So we know how to model one grayscale pixel. We can
sample from this distribution to synthesize a random 1-pixel image.

How do we model the distribution over a second grayscale pixel given the first? In fact,
we already know how to model this setting; mathematically, we are just trying to model
p(x2|x1) where xq is the first pixel and xg is the second. Treating xo as a categorical
variable (just like x;), we can simply use a softmax regression, which we saw in Chapter ??.
In that chapter we were modeling a K-way categorical distribution over K object classes,
conditioned on an input image. Now we can use exactly the same tools to model a 256-way
distribution over a the second pixel in a sequence conditioned on the first.

What about the third pixel, conditioned on the first two? Well, this is again a problem
of the same form: a 256-way softmax regression conditioned on some observations. Now you
can see the induction: modeling each next pixel in the sequence that forms the image is a
softmax regression problem that models p(xn|X1,...,X,—1). In fact, it looks almost identical
to Figure 7?7 in Chapter ?7:

Prediction %, Ground truth label x, Lo_gs
f:X — R H(xy %) = —Zx log &,
Om 0
X1 X1 Y| L] | [
O] [O
8=
O . © O
[| [
N] N
N N [|

0 -log prob 00 0 Prob 1 0 Loss

You might be wondering: how do we turn an image into a sequence of pixels? Good
question! There are innumerable ways, but the simplest is often good enough: just vectorize
the 2D grid of pixels by first listing the first row of pixels, then the second row, and so forth.
In general, any fixed ordering of the pixels into a sequence is actually valid, but this simple

1.2. TYPES OF GENERATIVE MODELS 11

method is perhaps the most common.

So we can model the probability of each subsequent pixel given the preceding pixels.
To generate an image we can sample a value for the first pixel, then the second given the
first, then the third given the first and second, and so forth. But is this a valid model of
p(X) = p(x1,...,X,), the probability distribution of the full set of pixels? Does this way of
sequential sampling draw a valid sample from p(X)? It turns out it does, according tothe
chain rule of probability. This rule allows us to factorize any joint distribution into a
product of conditionals as follows:

p(X) = p(Xn|xX1, -y Xn—1)P(Xn—1|X15- -, Xpn—2) ... p(xa2|x1)p(x1) (1.36)
p(X) = Hp(xi\xh o Xio1) (1.37)

This factorization demonstrates that sampling from such a model can be indeed done in
sequence because all the conditional distributions are independent of each other, and we just
take a product over all of them. This sampling method is also called ancestral sampling
(sample your ancestors first, then each next “generation” given the preceding generation).

To train an autogressive a model, you just need to extract supervised pairs of desired
input-output behavior, as usual. For an autoregressive model of pixels, that means extracting
sequences of pixels x1,...,x,_1 and corresponding observed next pixel x,,. These can be
extracted by traversing images in raster order. The full training and testing setup looks like
this:

X1y oy Xn—1 Xp
80 DEE, N
k= 00E , @ .
% oEE | = — Learner | — Pr?dl(itor
- OEE, m |
o0
é X1+ Xn—1 &L
= Predictor | — HHEME
fas]
n

)

Training efficiency trick: When training autoregressive models, the naive way to set up
the training batches is to take as input a sequence x1, ..., X4, then predict X5, compare the
prediction to the ground truth x5, and backprob the loss. It turns out there is a much more
efficient way to do it: typically, to predict X5, the autoregressive model had to also predict
X1,...,X4 — this is the case, for example, if the autoregressive model is an RNN, where the
hidden state has to be updated sequentially and, after you have computed the sequence of
hidden states, making predictions for each item in the sequence requires very little compute
(maybe a linear layer and a softmax). In these cases, it’s much more efficient to compare
each prediction X1, ...,X5 to the ground truth and backprop all five losses.

Autogressive models give us an explicit density function, Equation 1.37. To sample from
this density we can use ancestral sampling, which refers to sampling the first pixel from
p(x1), then, conditioned on this pixel, sample the second from p(xs|z1) an so forth. Since
each of these densities is a categorical distribution, sampling is easy: one option is to partition
a unit line segment into regions of length equal to the categorical probabilities and see where

As a notational
convenience, we define
here that

P(Xz‘|X1, cesXio1) =
p(x1) when ¢ = 1.

Notice that D has a form
similar to an energy
function, but, unlike

energy functions, D is
not, in general,
interpretable as an
unnormalized probability
density. Nonetheless, we
can roughly think of a
GAN as a type of
energy-based generative
model where we train
another network G to
directly sample from the
energy function rather
than relying on MCMC
to sample from the
energy function.

12 CHAPTER 1. GENERATIVE MODELS

a uniform random draw along this line falls. Autogressive models do not have latent variables
z, which makes them incompatible with applications that involve extracting or manipulating
latent variables.

1.2.3 Generative Adversarial Networks

Autoregressive models sample simple distributions step by step to build up a complex distri-
bution. Could we instead create a system that directly, in one step, outputs samples from the
complex distribution. It turns out we can, and one model that does this is the Generative
adversarial network, or GAN, which was introduced by [Goodfellow et al. 2014].

Recall that the goal of generative modeling is to make synthetic data that looks like real
data. We stated above that there are many different ways to measure “looks like” and each
leads to a different kind of generative model. GANs take a very direct and intuitive approach:
synthetic data looks like real data if a classifier cannot distinguish between synthetic images
and real images.

GANS consist of two neural networks, the generator, G : Z — X, which synthesizes data
from noise, and a discriminator, D : X — A!, that tries to classify between synthesized
data and real data.

G and D play an adversarial game in which G tries to become better and better at
generating synthetic images while D tries to become better and better at detecting any
errors GG is making. The learning problem can be written as a minimax game:

arg min max Exrpana 108 D(x)] + Epp, [log(1 — D(G(2)))] (1.38)
G

Schematically, the generator synthesizes images that are then fed as input to the discrim-
inator. The discriminator tries to assign a high score to generated images (classifying them
as “fake”) and a low score to real images from some training set (classifying them as “real”):

G(z)

Training data

g

Although we call this an adversarial game, the discriminator is in fact helping the gener-
ator to perform better and better, by pointing out its current errors (we call it an adversary
because it tries to point out errors). You can think of the generator as a student taking a
painting class and the discriminator as the teacher. The student is trying to produce new
paintings that match the quality and style of the teacher. At first the student paints flat
landscapes that lack shading and the illusion of depth; the teacher gives feedback: “this
mountain is not well shaded, it looks 2D.” So the student improves and corrects the error,
adding haze and shadows to the mountain. The teacher is pleased but now points out a
different error: “the trees all look identical, there is not enough variety.” The teacher and
student continue on in this fashion until the student has succeeded at satisfying the teacher.

S
]
el
—_
S
~

real (0.1)

4|>[se1 S 10YRUIWLIDSI(] |7

1.3. GENERATIVE VERSUS DISCRIMINATIVE 13

Eventually, in theory, the student — the generator — produces paintings that are just as good
as the teacher’s paintings.

This objective may be easier to understand if we think of the objectives for G and D
separately. Given a particular generator GG, D tries to maximize its ability to discriminate
between real and fake images (fake images are anything output by G). D’s objective is logistic
regression between a set of real data {x(¥}¥ | and fake data {x(V}N , where () = G(z(").

Let the optimal discriminator be labeled D*. We have that:

D" = argmax Bxc 0 D)) + Eany, l05(1 — D(G(2))] (1.39)

Now we turn to G’s perspective. Given D*, G tries to solve the following problem:

argéninEzwpz [log(1 — D*(G(2)))] (1.40)

Now, because the optimal discriminator D* depends on the current behavior of GG, as soon
as we change GG, updating it to better fool D*, D* no longer is the optimal discriminator
and we need to again solve problem in Eqn. 1.39. To optimize a GAN, we simply alternate
between taking one gradient on Eqn. 1.40 and then K gradient steps on Eqn. 1.39, where
the larger the K, the closer we are to approximating the true D*. In practice, setting K =1
is often sufficient.

GANSs are statistical image models GANs are related to the statistical image models
we saw in Chapter ??. In Heeger and Bergen (1995), for example, we synthesize images with
the same statistics as a source texture. This can be phrased as an optimization problem
in which we optimize image pixels until certain statistics of the images match those same
statistics measured on a source (training) set of images. We can write it as ||¢(z) — ¢(Z)]|.
This is a kind of discriminator — it outputs a score related to the difference between a
generated image and real data. However, unlike a GAN, this discriminator is hand-defined
in terms of certain statistics of interest rather than learned. Additionally, GANs amortize the
optimization over pixels that satisfy the “discriminator”. That is GANs learned a mapping
G from latent noise to samples rather than arriving at samples via an optimization process
that starts from scratch each time we want to make a new sample.

1.3 Generative versus discriminative

Classically, a distinction was made between “discriminative models” and generative models,
in the context of data classification problems. The former referred to models of p(y|x), where
y represented a label and x represented data. The latter were models of p(y, x), which can be
factored as p(x|y)p(y) (the idea is that p(x|y) is a model of how the data is generated). This
distinction has become less useful in modern Al, since often it’s hard to tell what is a label
and what is data — generally, both the inputs and outputs to our models are high-dimensional
structured objects.

These days, “generative models” usually simply refer to models of p(x|y) with two key
properties: 1) x is high-dimensional (usually we think of it as “data”), 2) the dimensions of
x are non-independent.

14

CHAPTER 1.

GENERATIVE MODELS

Bibliography

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In ACM SIG-
GRAPH, pages 229-236, 1995. In Computer Graphics Proceedings, Annual Conference
Series.

G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771-1800, 2002.

15

