Chapter 1

Representation learning

In this book we have seen many ways to represent visual signals — in the spatial domain
vs frequency domain, with pyramids and filter responses, and more. We have seen that the
choice of representation is critical: each type of representation makes some operations easy
and others hard. We also saw that deep neural nets can be thought of as transforming the
data, layer by layer, from one representation into another and another, and that those rep-
resentations are transferrable. If representations are so important, why not set our objective
to be “come up with the best representation possible.” In this chapter, we will try to do
exactly that.

This chapter is primarily an investigation of objectives. We will identify different objec-
tive functions that capture properties of what it means to be a good representation. Then
we will train deep nets to optimize these objectives, and investigate the resulting learned
representations.

1.1 Technical setting
Before diving in, let us present the basic problem statement and the notation we will be

using throughout this chapter. The goal of representation learning is to learn a mapping
from datapoints, x € X, to abstract representations, z € Z, as schematized in Figure 1.1:

Data space Representation space

Encoder

Figure 1.1: The goal in this chapter is to learn mappings from datapoints to abstract representa-
tions, which are typically simpler and more useful than the raw data.

We call this mapping an encoding and learn an encoder function f : X — Z. Typically
both x and z are high-dimensional vectors, and z is called a vector embedding of x. The
mapping f is trained so that z has certain desirable properties; common desirata include that
z be lower dimensional than x, that the distribution of z’s, i.e. p(z), has a simple structure
(such as being the unit Normal distribution), and that the dimensions of z be independent
factors, a.k.a. the representation should be disentangled [Bengio et al. 2013]. In this way Z
is a simpler, more abstracted, or better organized representational space than X, as reflected

This version of Occam’s
razor is also known as the
“Minimum Description
Length

Principle” [Griinwald
2007]

2 CHAPTER 1. REPRESENTATION LEARNING

in the shapes in Figure 1.1.

1.2 What makes for a good representation?

A good representation is one that makes subsequent problem solving easier. Below we discuss
several desiderata of a good representation:

Compression A good representation is one that is parsimonious and captures just the
essential characteristics of the data necessary for tasks of human interest. There are at least
three senses in which compressed representations are desirable:

1. Compressed representations require less memory to store.

2. Compression is a way to achieve invariance to nuisance factors. Depending on what
the representation will be used for, nuisances might include camera noise, lighting
conditions, and viewing angle. If we can factor out those nuisances, and discard them
from our representation, then the representation will be more useful for tasks like object
recognition where camera and lighting may change without affecting the semantics of
the observed object.

3. Compression is an embodiment of Occam’s razor: among competing hypotheses that
all explain the data equally well, the simplest is most likely to be true. As we will see
below, and in the next chapter, many representation learning algorithms seek simple
representations from which you can regenerate the raw data (e.g., autoencoders). Such
representations explain the data in the formal sense that they assign high likelihood to
the data (this is the same sense to which the idea of “Bayesian Occam’s Razor” applies;
see [MacKay et al. 2003] for a mathematical treatment of this idea). Therefore, we can
state Occam’s razor for representation learning: among two representations that fit the
data equally well, prefer the more compressed.

Many representation learning algorithms capture these goals by penalizing or constraining
the complexity of the learned representation. Such a penalty must be paired with some other
objective or else it will lead to a degenerate solution: just make the representation contain
nothing at all. Usually we try to compress the signal in certain ways while preserving other
aspects of the information it carries. Autoencoders and contrastive learning, which we will
describe below, are two representation learning algorithms based on the idea of compression.

Prediction The whole purpose of having a visual system is to be able to take actions that
achieve desirable future outcomes. Predicting the future is therefore very important, and we
often want representations that act as a good substrate for prediction.

The idea of prediction can be generalized to involve more than just predicting the future.
Instead we may want to “predict” the past (given when I'm seeing today, what happened
yesterday?), or we may want to predict gaps in our measurements, a problem known as
imputation. Filling in missing pixels in a corrupted image is an example of imputation,
as is superresolving a movie to play at a higher framerate. We may even want to perform
more abstract kinds of predictions, like predicting what some other agent is thinking about
(a problem called “Theory of Mind”). In general, “prediction” can refer to the inference
of any arbitrary property of the world given observed data. Facilitating the prediction of
important world properties — the future, the past, mental states, cause and effect, etc — is
perhaps the defining property of a good representation.

Most representation learning algorithms in vision are about learning compressed encod-
ings of the world around us that are also predictive of the future (and therefore a good
substrate for decision making). Beyond just compression and prediction, some works have
explored other goals, including that the representation be disentangled [Bengio et al. 2013],
interpretable [Koh et al. 2020], and actionable [Soatto 2013] (you can use it as an effective

1.3. AUTOENCODERS 3

Learning Learning
Method Principle Short Summary
Autoencoding Compression Remove redundant information
Contrastive ~ Compression Achieve invariance to viewing transformations
Clustering Compression Quantize continuous data into discrete categories
“Prediction” Prediction Predict the future
Imputation Prediction Predict missing data
Pretext tasks Prediction Predict abstract properties of your data

Table 1.1: One way to categorize different representation learning methods.

substrate for control). All these goals — compression, prediction, interpretability, etc — are not
in contrast to each other but rather overlap; for example, more compressed representations
may be simpler and hence easier for a human to interpret.

Types of representation learners Representation learning algorithms are mostly differ-
entiated by the objective function they optimize, as well as the constraints on their hypothesis
space. We explore a variety of common objectives in the following sections, and summarize
how these relate to the core principles of compression and prediction in Table 1.1.

1.3 Autoencoders

Autoencoders are one of the oldest and most common kind of representation learners [Rumel-
hart et al. 1985, Ballard 1987]. An autoencoder is a function that maps data back to itself
(hence the “auto”):

Data space Representation space Data space

,,,, Reconstruction
error

Encoder

Figure 1.2: Autoencoder.

On the right is an example of an autoencoder applied to an image. At first glance
this might not seem very useful: the output is the same as the input! The key trick is to
impose constraints on the intermediate representation z, so that it becomes useful. The most
common constraint is compression: z is a low-dimensional, compressed representation of x.

To be precise, an autoencoder F' consists of two parts, an encoder f and a decoder g,
with F = fog. The encoder, f : RV — RM maps high-dimensional data x € RY to a vector
embedding z € RM. Typically, the key property is that M < N, that is we have performed
dimensionality reduction (although autoencoders can also be constructed without this
property, in which case they are not doing dimensionality reduction but instead may place
other explicit or implicit constraints on z). The decoder, g : RM — RY performs the inverse
mapping to f, and ideally g is exactly the inverse function f~!. Because it may be impossible
to perfectly invert f, we use a loss function to penalize how far we are from perfect inversion,
and a typical choice is the squared error “reconstruction loss”, Lrecon(X,X) = ||x — f{||§ Then
the learning problem is:

fg = srgmin E, Ix — g(f(x))|3 (1.1)
sg

Autoencoders are one of
our favorite algorithms.
They may not seem like
much at first glance, but
they actually appear all
over the place, and many
methods in this book can
be considered to be
special kinds of
autoencoders, if you
squint. Two examples:
the steerable pyramid
from Chapter 7?7 is an
autoencoder, and the
CycleGAN algorithm
from Chapter 77 is also
an autoencoder. See if
you can find more
examples.

4 CHAPTER 1. REPRESENTATION LEARNING

The idea is to find a lower dimensional representation of the data from which we are able
to reconstruct the data. An autoencoder is fine with throwing away any redundant features
of the raw data but is not happy with actually losing information. The particular loss
function determines what kind of information is preferred when the bottleneck cannot support
preserving all the information and a hard choice has to be made. The Ly loss decomposes as
Ix — g(f(x))Hg = /> (@ — g(f(x))i)?, ie. asum over individual pixel errors. This means
that it only cares about matching each individual pixel intensity f(x); to the ground truth
x; and does not directly penalize patch-level statistics of x (i.e. statistics ¢(x) that do not
factorize as a product []; ¢;(x;) over per-pixel functions 1); for any possible set of functions
{1:}). Autoencoders can also be constructed using loss functions that penalize higher-order
statistics of x, and this allows, for example, penalizing errors in the reconstruction of edges,
textures, and other perceptual structures beyond just pixels [Snell et al. 2017].
The learning diagram for the basic Ly autoencoder looks like this:

Lo autoencoder

Objective
Data L(F(x),x) = ||F(x) — XH;

{X(i)}?:l — — f

Hypothesis space
F=gof:RN - RM RN

The optimizer is arbitrary but a typical choice would be gradient descent. The functional
form of f and g are typically deep neural nets. The output is a learned data encoder f. We
also get a learned decoder g as a byproduct, which has its own uses, but, for the purpose of
representation learning, is usually discarded and only used as scaffolding for training what
we really care about: f.

Closely related to autoencoders are other dimensionality reduction algorithms like Prin-
ciple Components Ananlysis (PCA). In fact, an Ly autoencoder, for which both f and g
are linear functions, learns an M-dimensional embedding that spans the same subspace as a
PCA projection to M-dimensions [Bourlard and Kamp 1988].

1.3.1 Experiment: Do autoencoders learn useful representations?

It is clear from the above that autoencoders will learn a compressed representation of the
data, but do they learn a useful representation? Of course the answer to this question will
depend on what we will use the representation for. Let’s explore how autoencoders work
on a simple data domain, consisting just of colored circles, triangles, and squares. The
data consists of 64k images that look like this: Each shape has a randomized size, position,

rotation. Each shape’s color is sampled from one of eight color classes (orange, green, purple,
etc) plus a small random perturbation.

For the autoencoder architecture we use a convolutional encoder and decoder, each with
6 convolutional layers interspersed with relu nonlinearities and a 128-dimensional bottleneck

1.3. AUTOENCODERS)

(i.e. M =128). We train this autoencoder for 20k steps of stochastic gradient descent, using
the Adam optimizer [Kingma and Ba 2014]) with a batch size of 128.

After training, does this autoencoder obtain a good representation of the data? To answer
this question, we need ways of evaluating the quality of a representation. There are many
ways and indeed how to evaluate representations is an open area of research. But here we
will stick with a very simple approach: see if the nearest neighbors, in representational space,
are meaningful.

We can test this in two ways: 1) for a given query, visualize the images in the dataset
whose embeddings are nearest neighbors to the query’s embedding, 2) measure the accuracy
of a 1-nearest-neighbor classifier in embedding space. Below we show both these analyses:
Recall that every layer of a neural net can be considered as an embedding (representation) of

100 1 /,-
L
shapei
90 4 ._......I.)...:
o -
S R ——
~— "———-
> -7
g0 -
- -
=
Q
Q 701
&
color
60 1
.
0 1 2 3 4 5 6
layer

Figure 1.3: (a) Nearest neighbors, in autoencoder embedding space, to a set of query images.
(b) Classification accurracy of a l-nearest-neighbor classifier of color and shape using the
embeddings at each layer of the autoencoder’s encoder.

the data. On the left we show the nearest neighbors to a set of query images, using the layer
6 embeddings of the data as the feature space in which to measure distance (“nearness”).
Since we have a 6-layer encoder, layer 6 is the bottleneck layer, the output of the full encoder
f- Notice that the neighbors are indeed similar to the queries in terms of their colors, shapes,
positions, and rotations — it seems the autoencoder produced a meaningful representation of
the datal

Next we will probe a bit deeper, and ask “how effective are these embeddings at classifying
key properties of the data?” On the right we show the accuracy of a 1-nearest-neighbor color
classifier (between the 8 color classes) and a shape classifier (circle vs triangle vs square)
applied on embedding vectors at each layer of the autoencoder’s encoder. The 0-th layer
corresponds to measuring distance in the raw pixel space — interestingly, the color classifier
does best on this raw represention of the data! That’s because the pixels are a more or
less direct representation of color. Color classification performance gets worse and worse
as we go deeper in the encoder. On the other hand, shape is not explicit in raw pixels,
so measuring distance in pixel-space does not yield good shape nearest neighbors. Deeper
layers of the encoder give representations that are increasingly sensitive to shape similarity,
and shape classification performance gets better. In general, there is no one representation
that is universally the best. Each is good at capturing some properties of the data and bad
at capturing others. As we go deeper into an autoencoder, the embeddings tend to become
more abstracted and therefore better at capturing abstract properties like shape and worse
at capturing superficial properties like color. For many tasks — object recognition, geometry
understanding, future prediction — the salient information is rather abstracted from the raw
data, and therefore for these tasks deeper embeddings tend to work better.

Neuroscientists think the
brain also uses prediction
to better encode sensory
signals, but focus on a
different part of the
problem. The idea of
predictive coding states
that the sensory cortex
only transmits the
difference between its
predictions and the
actual observed

signal [Huang and Rao
2011]. This chapter
presents how to learn a
representation that can
make good predictions in
the first place; “predictive
coding” focuses on one
thing you can do with
such a representation: use
it to compress future
signals, just transmitting
the surprises.

These tasks look a lot like
supervised learning. We
avoid calling it
“supervised” because that
connotes that we have
examples of input-output
pairs on the target task.
Here that would be input
data and exemplar
output representations.
But we don’t have that!
The “supervision” in this
setup is a pretext task
that we hope induces
good representations.

6 CHAPTER 1. REPRESENTATION LEARNING

1.4 Predictive encodings

We have already seen many kinds of predictive learning, indeed almost any function can be
thought of as making a “prediction”. In predictive representation learning, the goal is not to
make predictions per se, but to use prediction as a way to train a useful representation. The
way to do this is first encode the data into an embedding z, then map from the embedding to
your target prediction. This gives a composition of functions, just like with the autoencoder,
which can be trained with a prediction task yet yield a good data encoder. The prediction
task is a pretext task for learning good representations.

Different kinds of prediction tasks have been proposed for learning good representations,
and depending on the properties you want in your representation different prediction tasks
will be best. Examples include predicting future frames in a video [Recasens et al. 2021]
and predicting the next pixel in an image given a sequence of preceding pixels [Chen et al.
2020]. It is also possible to use an image’s semantic class as the prediction target. In that
case, the prediction problem is identical to training an image classifier, but the goal is very
different. Rather than obtaining a good classifier at the end, our goal is instead to obtain a
good image encoding (which is predictive of semantics) [Donahue et al. 2014]. These three
examples are visualized below:

Class
prediction

Next pixel
prediction

Future frame

Pretext task: -
prediction

Model
schematic:

Let us now describe the predictive learning problem more formally. Let y be the prediction
target. Then predictive representation learning looks like this:

Predictive rep learning

Objective
Data L(F(x),y) = D(F(x),y)

Hypothesis space
F=fog:RN - RM RK

D is some distance function, e.g., Lo. Just like with the autoencoder, f and g are usually
neural nets but may be any family of functions — often g is just a single linear layer. Unlike
with autoencoders, there is no standard setting for the relative dimensionalities of N, M, and
K; instead it depends on the prediction task. If the task is image classification, then IV will be
the (large) dimensionality of the input pixels, M will usually be much lower dimensional, and
K will be the number of image classes (to output K-dimensional class probability vectors).

1.5. SELF-SUPERVISED LEARNING 7

Object detectors emerge from scene-level supervision The real power of these pre-
texts tasks lies not in solving the tasks themselves but in acquiring useful image embeddings
z as a byproduct of solving the pretext task. The amazing thing that ends up happening
is that z-space may have emergent structure that was not explicit in either the raw training
data nor the pretext task. As a case study, consider the work of [Zhou et al. 2015]. They
trained a CNN to perform scene classification — is this image a living room, bedroom, kitchen,
etc. The net did wonderfully at that task, but that wasn’t the point. The researchers instead
peeled apart the net and looked at what input images were causing different neurons within
the net to fire. What they found is that there were neurons, on hidden layers in the net,
that fired selectively whenever the input image was of a specific object class. For example,
one particular neuron would fire when the input was a staircase, and another neuron would
fire predominantly for inputs that were rafts. The images below show four of the top images
that activate these two particular neurons. These particular neurons are on convolutional
layers, so really each is a filter response; the highlighted regions indicate where the feature
map for that filter exceeds a threshold:

scene label Images that maximally activate these neurons

LT Neuron A j 7

% " NeuronB

What this shows is that object detectors — i.e. neurons that selectively fire when they see
a particular object class — emerge in the hidden layers of a CNN trained only to perform scene
classification. This makes sense in retrospect — how else would the net recognize scenes if not
first by identifying their constituent objects? — but it was quite a shock for the community to
see it for the first time. It gave some evidence that the way we humans parse and recognize
scenes may match the way CNNs also internally parse and recognize scenes.

1.5 Self-supervised learning

Predictive learning is great when we have good prediction targets that induce good repre-
sentations. What if we don’t have labeled targets provided to us? Instead we could try to
cook up targets out of the raw data itself — for example, we could decide that the topright
pixel’s color will be the “label” of the image. This idea is called “self-supervision”. It looks
like this:

Self-sup rep learning

Objective
Data £(F<X)7Y) = D(F(VI(X)>7 %(X))

X0y — — f

Hypothesis space
F=fog:RV 5 RM 5 RE

V1 and V5 are two different functions of the full data tensor X. For example, V7 might be
the left side of the image X and V5 could be the right side, so the pretext task is to predict
the right side of an image from its left side. In fact, several of the examples we gave for
predictive learning are of the self-supervised variety: predicting a future frame, or a next

8 CHAPTER 1. REPRESENTATION LEARNING

pixel, can be cooked up just by splitting to a video into past and future frames, or splitting
an image into previous and next pixels in a raster order sequence.

1.6 Imputation

Imputation is a special case of self-supervised learning, where the prediction targets are
missing elements of the input data. For example, predicting missing pixels is an imputation
problem, as is colorizing a black and white photo (i.e. predicting missing color channels):

Spatial Spatial Channel

Pretext task: imputation imputation imputation

V2(X) V2(X)

Model
schematic:

[Observed
] Masked

Imputation — whether over spatial masks or missing channels — can result in effective
visual representations [Vincent et al. 2008, Pathak et al. 2016, He et al. 2022, Zhang et al.
2016, Larsson et al. 2016, Zhang et al. 2017]. Notice that predicting future frames and next
pixels — our examples from above — are also imputation problems.

Above we described how object detectors emerge as a byproduct of training a net to
perform scene classification. What do you think emerges as a byproduct of training a net to
perform colorization?

It may surprise you to find that the answer is: object detectors once again! This certainly
surprised us when we saw the following results in [Zhang et al. 2016]:

Images that maximally activate these neurons

__________ Neuron A e S ' a}
DI@I‘I@: S
i] T Newon

In fact, object detectors emerge in CNNs for just about any reasonable pretext task —
scene recognition, colorization, inpainting missing pixels, and more. What may be going on
is that the notion of “objects” is not just a human invention but rather maps onto some
fundamentally useful structure out there in the world, and any roughly similar intelligence
— an Al system, an alien on Mars — will learn to see the world in a similar way as we do, i.e.
as composed of the modular and compositional parts we call objects.

1.7. ABSTRACT PRETEXT TASKS 9

1.7 Abstract pretext tasks

Other varieties of self-supervised learning set up more abstract prediction problems, rather
than just aiming to predict missing data. For example, we may try to predict if an image has
been rotated 90 degrees [Komodakis and Gidaris 2018], or we may aim to predict the relative
position of two image patches given their appearance [Doersch et al. 2015]. These pretext
tasks can induce effective visual representations because solving them requires learning about
semantic and geometric regularities in the world, such as that clouds tend to appear near
the top of an image.

1.8 Clustering

One way to compress a signal is dimensionality reduction, of which we saw an example of
above with the autoencoder. Another way is to quantize the signal into discrete categories, an
operation known also as clustering. Mathematically, clustering is a function f : {x}, —
{1,...,k}, i.e. a mapping from the members of a dataset {x}¥ ; to k integer classes (k can
potentially be unbounded). Representing integers with one-hot codes, clustering looks like
this:

ay

f N “bird”
a2
“bird”
f
as
fl—
“temple”

Figure 1.4: You can think of clustering as being just like image labeling, except that that
labels are self-discovered rather than being predefined.

Clustering follows from the principle of compression: if we can well summarize a signal
with just a discrete category label, then this summary can serve as a lighter weight and more
abstracted substrate for further reasoning. If this idea seems abstract just consider the words
“antelope”, “giraffe”, and “zebra”. Those words are discrete category labels (i.e. integers)
which summarize huge conceptual sets (just think of all the individual lives and richly diverse
personalities you are lumping together with the simple word “antelope”). Words, then, are
clusters! — they are mappings from data to integers — clustering is the problem of making up
new words for things.

Many clustering algorithms not only partition the data but also compute a representation
of the data within each cluster; this representation is sometimes called a code vector. The
most common code vector is the cluster center, u, i.e. the mean value of all datapoints
assigned to the cluster. Clusters can also be represented by other statistics of the data
assigned to them, such as the variance of this data or some arbitrary embedding vector,
but this is less common. The set of cluster centers, {u;}%_;, is a representation of a whole
dataset. They summarize the main modes of behavior in the dataset.

Another name for
clustering, which appears
here and there in the
representation learning
literature, is vector
quantization.

Words, of course, are
given additional structure
when used in a language
— grammar, connotations,
etc — beyond just being a
set of clusters. The same
kind of structure can be
added on top of visual
clusters.

10 CHAPTER 1. REPRESENTATION LEARNING

1.8.1 K-means

There are many types of clustering algorithm but we will illustrate the basic principles just
with one example, perhaps the most popular clustering algorithm of them all, k-means. K-
means is a clustering algorithm that partitions the data into k clusters. Each cluster is also
represented with a code vector z € RM. The k-means objective is to minimize the distance
between each datapoint and the code vector of the cluster it is assigned to. This way, the
code vector assigned to each datapoint will be a good approximation to the value of that
datapoint, and we will have a faithful, but compressed, representation of the dataset.

There are two free parameter sets to optimize over: the code vectors and the cluster
assignments. The cluster assignments can be represented with our clustering function f, and
we will represent the code vectors for each cluster with a function g : {1,...,k} — RM,
where the data dimensionality is M. Both f and g can be implemented as lookup tables,
since for both the input is a countable set. The k-means algorithm amounts to just filling in
the ranges of these two lookup tables.

Now we are ready to present the full k-means algorithm, viewed as a learning algorithm.
As you will see below, the learning diagram looks almost the same as for an autoencoder!
The key differences are 1) the bottleneck is discrete integers rather than continuous vectors,
and 2) the optimizer is slightly different (we will delve into it below).

k-means (L5)

Objective
2
L(F(x),x) = [[F(x) = x|l;
Data Hypothesis space

{xOy, — — f

F=gof:{x}¥, = {1,....k} - RM

Optimizer

Block coordinate descent

There are two functions we are optimizing over: the encoder f and the decoder g. f
can be parameterized by a set of integers {a;}.;, a; € {1,...,k} which specify the cluster
assignment for each datapoint, that is, f (x(i)) = a;. g can be parameterized by a set of k£ code
vectors {zj}le, z; € RM one for each cluster, so we have F(x®) = z,,. g is differentiable
w.r.t. to its parameters but f is not, because the parameters of f are discrete variables. This
means that gradient descent will not be a suitable optimization algorithm (the gradient 887”

is undefined). Instead we will use the optimization strategy described next.

Optimizing k-means k-means uses an optimization algorithm called block coordinate
descent. This algorithm splits up the optimization parameters into multiple “blocks”. Then
it alternates between fully minimizing the objective w.r.t. each block of parameters. In k-
means there are two parameter blocks: {a;}L, and {z;}¥_,. So, we need to derive update
rules that find the minimizer of the k-means objective w.r.t. each block. It turns out there
are simple solutions for both:

a; < argmin sz —x® < Assign datapoint to nearest cluster (1.2)
JE{L,.. k) 2
1
Zj < N Z 1(a; = 7)x@ <4 Set code vector to cluster center (1.3)
i=1

These steps are repeated until a fixed point is reached, which occurs when all datapoints
assigned to each cluster are closest to that cluster’s code vector.

1.8. CLUSTERING 11

Why are these the correct updates? Equation 1.2 is straightforward: it’s just a brute
force enumeration of all k£ possible assignments, from which we select the one that min-
imizese the k-means objective for that datapoint (L(F(x(®,x®)). Equations 1.3 is the
minimizer w.r.t. each z; since our task is to minimize the objective over all datapoints,
ie. Zi\il |2, — x(i)Hz, which can be rewritten as Z?:l Ziil L(a; = j) ||z — x(i)H;. Each
term in the outer sum is affected by only one of the k z;’s. Looking at one in isolation we

o (12
are seeking arg min, Zf}’:l sz —x0)H , where ¢/ enumerates all the datapoints for which
2

a; = j. Recall that the point that minimizes the sum of squared distances from a dataset is
the mean of the dataset. This yields our update in Equation 1.3: just set the code to be the
mean of all datapoints assigned to that cluster.

Now we can see where the name k-means comes from: the optimal code vectors are the
cluster means! The algorithm is very simple: compute the cluster means given current data
assignments; re-assign each datapoint to nearest cluster mean; re-compute the means; and
so on until convergence. An example of applying this algorithm to a simple dataset of 2D
points is given in Figure 1.5.

"R R
50 . o o %3 50 03 3 -WV, 50 3. O A ST 50 . Oy A TP
S oe e 8" £ 8 & < @ - 4o
iy FE | L L I P L L g T
£ oo 23 '. ..o"' FT '. 3 & oo '. CI F :&8‘%"
. o 2 ¢ Y id s L
oo 0 S50 0
8 3 % &
5 00 25 s0 1a s fo 35 oo 25 d0 15 D5 G0 35 o0 25 a0 Th G0 35 00 2w
T Ty kot Z
a) b) c) d)

Figure 1.5: Iterations of k-means applied to a simple 2D dataset, with k¥ = 5. The code
vectors assigned to each cluster are marked with an x. a) Initialization. b) Update code
vector to be cluster means. ¢) Update assignments. d) Converged solution (here occurs after
4 updates of both codes and assignments).

k-means from multiple perspectives: This section has presented k-means as a repre-
sentation learning algorithm. In other texts you may encounter other views on k-means,
e.g., as a way of interpreting your data or as simple generative model. These views are all
complementary and all simultaneously true. Here we showed that k-means is like an autoen-
coder with a discrete bottleneck. In the next chapters we will encounter generative models,
including one called a Gaussian Mixture Model (GMM). k-means can also be viewed as a
vanilla form of a GMM. Later we will show that another kind of autoencoder, called a varia-
tional autoencoder (VAE), is a continuous version of a GMM. So we have a rich tapestry of
relationships: autoencoders and VAEs are continous versions of k-means and GMMs, respec-
tively. GMMs and VAEs are formal probabilistic models that, respectively, extend k-means
and autoencoders (which do not come with probabilistic semantics). This is just one set of
connections that can be made. In this book, be on the look out for more connections like this.
It can be confusing at first to see multiple different perspectives on the same method: which
one is correct? But rarely is there a single correct perspective. It is useful to identify the
delta between each new model you encounter and all the models you already know. Usually
there is a small delta w.r.t. many things you already know, and rarely is there no meaningful
connection between any two arbitrary models. As an exercise, try picking a random concept
on a random page in this book (or, for a challenge, any book on your bookshelf). What is
the delta between that concept and k-means? In our experience, it will almost always be
very small (but sometimes it takes a lot of effort to see the connection).

Contrastive learning is
actually more closely
related to clustering than
it may at first seem.
Contrastive learning
maps similar datapoints
to similar embeddings.
Clustering is just the
extreme version of this
where there are only k
distinct embeddings and
similar datapoints get
mapped to the exact
same embedding.

12 CHAPTER 1. REPRESENTATION LEARNING

1.8.2 Clustering in vision

In vision, the problem of clustering is related to the idea of perceptual organization,
which we cover in detail in Chapter ??7. We humans see the world as organized into different
levels of perceptual structure: contours and surfaces, objects and events. These structures
are groupings, or clusters, of related visual elements: a contour is a group of points that form
a line, an object is a group of parts that form a cohesive, nameable whole, etc. Algorithms
like k-means, in a suitable feature space, can discover them.

1.9 Contrastive learning

Dimensionality reduction and clustering algorithms learn compressed representations by cre-
ating an information bottleneck, that is, by constraining the number of bits available in
the representation. An alternative compression strategy is to supervise what information
should be thrown away. Contrastive learning is one such approach where a representation
is supervised to be invariant to certain viewing transformations, resulting in a compressed
representation that only captures the properties that are common between the different
views.

Learning invariant representations is classic goal of computer vision. Recall that this was
one of the reasons we use convolutional image filters: convolution is equivariant with cam-
era translation, and invariance can then be achieved simply by pooling over filter responses.
CNNs, through their convolutional architecture, bake translation invariance into the hypoth-
esis space. In this section we will see how to incentivize invariances instead through the
objective function.

The idea is to simply penalize deviations from the invariance we want. Suppose T is a
transformation we wish our representation to be invariant to. Then we may use a loss of the
form ||f(T(x)) — f(x)||§ to learn an encoder f that is invariant to 7. We call such a loss an
alignment loss [Wang and Isola 2020].

That seems easy enough, but you may have noticed a flaw: what if f just learns to output
the zero vector all the time? Trivial alignment can be achieved when there is representational
collapse, and all datapoints get mapped to the same arbitrary vector.

Contrastive learning fixes this issue by coupling an alignment loss with a second loss that
pushes apart embeddings of datapoints for which we do not want an invariant representation.
The supervision for contrastive learning comes in the form of positive pairs and negative pairs.
Positive pairs are two datapoints we wish to align in z-space; if we wish for invariance to T'
then a positive pair should be constructed as x and x* = T(x). Negative pairs, {x,x™},
are two datapoints that should be represented differently in z-space. Commonly, negative
pairs are random independently sampled datapoints {x(i), x()} ~ Paata(X). Given such data
pairings, the objective is to pull together the positive pairs and push apart the negative pairs:

Data space Representation space

Pull together
<> Push apart

Encoder

This kind of contrastive learning results in an embedding that is invariant to a transfor-
mation T. Extending this to achieve invariance to a set of transformations {T1,...,T,} is

1.9. CONTRASTIVE LEARNING 13

straightforward — just apply the same loss for each of T1,...,T,.

A second kind of contrastive learning is based on cooccurrence, where the goal is to
learn a common representation of all cooccurring signals. This form of contrastive learning
is useful for learning, e.g., an audiovisual representation where the embedding of an image
matches the embedding of the sound for that same scene. Or, returning to our colorization
example, an image representation where the embedding of the grayscale channels matches
the embedding of the color channels. In both these cases we are learning to align cooccurring
sensory signals. This kind of contrastive learning is schematized in Figure 1.6.

300 y@

Matching views Unmatching view

Figure 1.6: Contrastive learning from multiple views of the data. Figure inspired by [Tian
et al. 2020].

In Figure 1.6, we refer to the two cooccurring signals — color and grayscale — as two
different “views” of the total data tensor X, just like we did in the sections above: x = V;(X),
y = V1(X). You can think of these views either as resulting from sensory cooccurrences or
as two transformations of X, where the transformation in the color example is channel
dropping. Thus, the two kinds of contrastive learning we have presented are really one and
the same: any two signals can be considered transformations of a combined “total-signal”,
and any signal and its transformation can be considered two cooccurring ways of measuring
the underlying world.

Nonetheless, it is often easiest to conceptualize these two approaches separately, and
below we give learning diagrams for each:

Constrastive learning (transformations)

Objective
Data > DT (™)), f(xD))
{xOyL,, 17— —D(f(x®), £(x)Y) s f

Hypothesis space
f: RN - RM

14 CHAPTER 1. REPRESENTATION LEARNING

Constrastive learning (cooccurrences)

Objective
Data, Zi,j D(f1(X(i)),f2(y(“))
{x0,y O}, — —D(fi(xD), foly D)) — £

Hypothesis space
fla f2 : RN — RM

In these diagrams, D is a distance function. Above we give just one simple form for
the contrastive objective above; many variations have been proposed. Three of the most
popular are the “constrastive loss” [Hadsell et al. 2006] (an older definition of the term, now
overloaded with our more general notion of contrastive losses being any that pull together
positive samples and push apart negative samples), the triplet loss [Chechik et al. 2010],
and the InfoNCE loss [Oord et al. 2018]. The “contrastive loss” and triplet loss add
the concept of a margin to the vanilla formulation: they only push/pull when distance is
less than a specified margin — otherwise points are considered far enough apart (or close
enough together). The InfoNCE loss is a variation that treats establishing a contrast as a
classification problem: it tries to move points apart until you can classify the positive sample,
for a given anchor, separately from all the negatives. The general formulation of these losses
takes as input an anchor x, a positive example x, and one or more negative examples
x~. The positive and negative may be defined based on transformations, coocurrences, or
something else. The full learning objective is to sum over many samples of anchors, positives,
and negatives, sampled set evaluated according to the losses as follows:

£(X,X+,X_) = maX(D<f(X)a f(X+) — Mpos, 0)_

max(mneg — D(f(x), f(x7),0) <4 “contrastive” (1.4)
L(x,xT,x7) = max(D(f(x), f(x") — D(f(x), f(x~) —m,0) < triplet (1.5)
e f(x) /7

L(x,xT, {x; 1) = -1 a InfoNCE (1.6)

O I CIT I T 4 S ef GO I/

Notice that the InfoNCE loss is a log softmax over a vector of scores f1(x)T f2(c)/7 with
c={at,z7,...,zy}; you can therefore think of this loss as corresponding to a classification
problem where the ground truth class is 2 and the other possible classes are ..., 2y}
(refer to Chapter ?? to revisit softmax classification).

1.9.1 Alignment and uniformity

Wang and Isola (2020) showed that the contrastive loss (specifically the InfoNCE form)
encourages two simple properties of the embeddings: alignment and uniformity. We have
already seen that alignment is the property that two views in a positive pair will map to
the same point in embedding point: i.e. the mapping is invariant to the difference between
the views. Uniformity comes from the negative term, which encourages embeddings to
spread out and tend toward an evenly spread, uniform distribution. Importantly, for this
to work out mathematically, the embeddings must be normalized, that is, each embedding
vector must be a unit vector. Otherwise, the negative term can push embeddings toward
being infinitely far apart from each other. Fortunately, it is standard practice in contrastive
learning (and many other forms of representation learning) to apply L, normalization to
the embeddings. The result is that the embeddings will tend toward a uniform distribution

1.9. CONTRASTIVE LEARNING 15

+ query nearest neighbors in z-space

z
[R » == - 704 Z-space ..
YA LTI
\ 0.5
. . e 8
T, T ~0.51

(A Al
[
—1.04]
10 -05 00 05 10

ﬁ\‘ 7%,\] z—wz; v

\ 0.5+
0.0+
. T
T T T T T
-1.0 -0.5 0.0 0.5 1.0

Figure 1.7: Contrastive learning on colored shapes using two different transformations for
creating positive pairs. The choice of transformation controls which features the embedding
becomes sensitive to and which it becomes invariant to.

Color sensitive contrastive learning

~

uery nearest neighbors in z-space

o®
00 . |-
OBk

Shape sensitive contrastive learning

over the surface of the M-dimensional hypersphere, where M is the dimensionality of the
embeddings. See [Wang and Isola 2020] Theorem 1 for a formal statement of this fact.

A result of this analysis is we may explicit decompose contrastive learning into one loss
for alignment and another for uniformity, with the following forms:

ﬁalign(f; Oé) =]E(x,x‘*')fvppos[f(X) - f(XJr)HS} (17)
Eunif (fv t) = IOg Eprdata [6_t||f(X)_f(x+)§H] (18)
[’(fy , ta)‘) = ‘Calign(f; Oé) + A‘Cunif

where ppos is the distribution of positive pairs and a, ¢, and A are hyperparameters of the
losses.

1.9.2 Experiment: designing embeddings with contrastive learning

Using the alignment and uniformity objective defined above, we will now illustrate how one
can design embeddings with desired invariances. We will use the shape dataset described in
Section 1.3, and will use the same encoder architecture and optimizer as from that section (a
convnet with 6 layers, Adam optimizer, 20k iterations of SGD, batch size of 128). In contrast
to the autoencoder experiment, however, we will set the dimensionality of the embedding to
M = 2, so that we can visualize it in a 2D plot.

Suppose we wish to obtain an embedding that is sensitive to color and invariant to shape.
Then we should choose a view transformation 7T, that preserves color while changing shape.
A simple choice, that turns out to work, is for T, (x) to simply output a crop from the image
x (this transformation does not really change the object’s shape but still ends up resulting
in shape-invariant embeddings since color is a much more obvious cue for the convnet to
pick up on and use for solving the contrastive problem). The result of contrastive learning,
using La1ign + Lunis on data generated from T is shown on the top row of Figure 1.7. Notice

16 CHAPTER 1. REPRESENTATION LEARNING

that the trained f maps colors to be clustered into our color classes while the clusters are
spread out more or less uniformly across the surface of a circle in embedding space (a 1D
hypersphere, since the embeddings are 2D and are normalized).

We can repeat the same experiment but with a view transformation T; designed to be
invariant to color. To do so we simply use the same transformation as for T, (i.e. cropping)
plus add a random shift in hue, brightness, saturation of the shape’s color. Training on
views generated from Tg results in the embeddings on the bottom row of Figure 1.7. Now
the embeddings become invariant to color but cluster shapes and spread out the three clusters
to be roughly uniformly spaced around the hypersphere.

1.10 Concluding remarks

This chapter, like much of this book, is about representations. Different representations make
different problems easy — or hard. It is important to remember that every representation
involves a set of tradeoffs: a good representation for one task may be a bad representation for
another task. One of the current goals of computer vision research is to find general-purpose
representations, and what this means is not that the representation will be good for all tasks
but that it will be good just for the tasks humans care about, which is a very tiny subset of
all possible tasks.

Bibliography

D. H. Ballard. Modular learning in neural networks. In AAAI volume 647, pages 279284,
1987.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspec-
tives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798-1828,
2013.

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value
decomposition. Biological cybernetics, 59(4):291-294, 1988.

G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale online learning of image
similarity through ranking. Journal of Machine Learning Research, 11(3), 2010.

M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever. Generative
pretraining from pixels. In International Conference on Machine Learning, pages 1691—

1703. PMLR, 2020.

C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by con-
text prediction. In Proceedings of the IEEE international conference on computer vision,
pages 1422-1430, 2015.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf:
A deep convolutional activation feature for generic visual recognition. In International
conference on machine learning, pages 647-655. PMLR, 2014.

P. D. Grinwald. The minimum description length principle. MIT press, 2007.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pages 1735-1742. IEEE, 2006.

K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16000-16009, 2022.

Y. Huang and R. P. Rao. Predictive coding. Wiley Interdisciplinary Reviews: Cognitive
Science, 2(5):580-593, 2011.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXi:1412.6980, 2014.

P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, and P. Liang. Concept
bottleneck models. In International Conference on Machine Learning, pages 5338-5348.
PMLR, 2020.

N. Komodakis and S. Gidaris. Unsupervised representation learning by predicting image
rotations. In International Conference on Learning Representations (ICLR), 2018.

17

18 BIBLIOGRAPHY

G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic col-
orization. In European conference on computer vision, pages 577-593. Springer, 2016.

D. J. MacKay, D. J. Mac Kay, et al. Information theory, inference and learning algorithms.
Cambridge university press, 2003.

A. v.d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders:
Feature learning by inpainting. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 25362544, 2016.

A. Recasens, P. Luc, J.-B. Alayrac, L. Wang, F. Strub, C. Tallec, M. Malinowski, V. Pa-
traucean, F. Altché, M. Valko, et al. Broaden your views for self-supervised video learning.
International Conference on Computer Vision, 2021.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive
Science, 1985.

J. Snell, K. Ridgeway, R. Liao, B. D. Roads, M. C. Mozer, and R. S. Zemel. Learning to
generate images with perceptual similarity metrics. In 2017 IEEFE International Conference
on Image Processing (ICIP), pages 4277-4281. IEEE, 2017.

S. Soatto. Actionable information in vision. In Machine learning for computer vision, pages
17-48. Springer, 2013.

Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. In FEuropean conference
on computer vision, pages 776—794. Springer, 2020.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust
features with denoising autoencoders. In Proceedings of the 25th international conference
on Machine learning, pages 1096-1103, 2008.

T. Wang and P. Isola. Understanding contrastive representation learning through alignment
and uniformity on the hypersphere. In International Conference on Machine Learning,
pages 9929-9939. PMLR, 2020.

R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In European conference on
computer vision, pages 649—-666. Springer, 2016.

R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by
cross-channel prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1058-1067, 2017.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Object detectors emerge in
deep scene cnns. ICLR, 2015.

