
Chapter 1

Recurrent neural nets

Draft chapter from Torralba, Isola, Freeman

RNNs are a neural net architecture for modeling sequences – they perform sequential
computation (rather than parallel computation).

So far we have seen feedforward neural net architectures. These architectures can be
represented by directed acyclical computation graphs. Recurrent neural networks, or
RNNs, are neural nets with feedback connections. A feedback connection

defines a recurrence in
the computational graph.

Their computation graphs have cycles.
That means that the outputs of one layer can send a message back to earlier in the compu-
tational pipeline. To make this well-defined, RNNs introduce the notion of timestep. One
timestep of running an RNN corresponds to one functional call to each layer (or computation
node) in the RNN, mapping that layer’s inputs to outputs.

RNNs are all about adaptation. They solve the problem: what if we want our computa-
tions in the past to influence our computations in the future? If we have a stream of data,
a feedforward net has no way to adapting its behavior based on what outputs it previously
produced.

To motivate RNNs, we will first consider a deficiency of CNNS. Consider that we are
processing a temporal signal with a CNN, like so:

ww

time

The filter w slides over the input signal and produces outputs. In this example, imagine
the input is a video of your dog, Rufus. The output produced for the first set of frames is
entirely independent from the output produced for a later frame, as long as the receptive
fields do not overlap. Maybe it got dark out as the video progressed, and a clear image of
Rufus became hard to discern as the light dimmed. Then the convolutional response, and
the net’s prediction, for later in the video may be of low quality, maybe the net now predicts
this is your neighbor’s dog, Douglas!

Wouldn’t it be nice if we could inform the CNN’s later predictions that earlier in the day
we had a brighter view and this was clearly Rufus? With a CNN, the only way to do this is
to increase the size of the convolutional filters so that the receptive fields can see sufficiently
far back in time. But what if we last saw Rufus a year ago, it would be infeasible to extend
our receptive fields a year back. How can we humans solve this problem and recognize Rufus
after a year of not seeing him?

1

2 CHAPTER 1. RECURRENT NEURAL NETS

The answer is memory. The recurrent feedback loops in an RNN are a kind of memory.
They propagate information from timestep t to timestep t+ 1. In other words, they remem-
ber information about timestep t when processing new information at timestep t + 1. By
induction, then, an RNN can, in theory, remember information over arbitrarily long time
intervals. In fact, RNNs are Turing Complete: you can think of them as a little computer.
They can do anything a computer can do.

Here’s how RNNs arrange their connections to perform this propagation:

ww

time

input

hidden

output

The key idea of an RNN is that there are lateral connections, between hidden units,
through time. The inputs, outputs, and hidden units may be multidimensional tensors; to

denote this we will use , as was reserved for denoting a single (scalar) neuron.
The idea of a “time” in

an RNN does not
necessarily mean time as

it is measured on a clock.
Time just refers to

sequential computation;
the timestep t is an index

into the sequence. The
sequential computation

could progress over a
spatial dimension

(processing an image
pixel by pixel) or over the

temporal dimension
(processing a video frame

by frame), or even over
more abstracted

computational modules.

Here is
a simple 1-layer RNN:

time

xin

h

xout

Diagram (a), to the left, is the unrolled computation graph. Diagram (b), to the right,
is the computation graph rolled up, with a feedback connection. Typically we will work with
unrolled graphs because they are DAGs, and therefore all the tools we have developed for
DAGs, including backprop, will extend naturally to them. Note however, that RNNs can
run for unbounded time, and process signals that have unbounded temporal extent, while a
DAG can only represent a finite graph. The DAG depicted above is therefore a truncated
version of the RNN’s true computation graph.

1.1 Recurrent layer

A recurrent layer is defined by the following equations:

ht = f(ht−1,xint) / update state based on input and previous state (1.1)

xoutt = g(ht) / produce output based on state (1.2)

This is a layer that includes a state variable, h. The operation of the layer depends on its
state. The layer also updates its state every time it is called, therefore the state is a kind of
memory.

f and g can be arbitrary functions, and we can imagine a wide variety of recurrent layers
defined by different choices for the form of f and g.

One common kind of recurrent layer is the Simple Recurrent Layer, or SRN, which
was defined in “Elman Networks” [Elman 1990]. For this layer, f is a linear layer followed
by a pointwise nonlinearity, and g is another linear layer. The full computation is defined by
the following equations:

ht = σ1(Wht−1 + Uxint + b) (1.3)

xoutt = σ2(Vht + c) (1.4)

1.2. BACKPROP THROUGH TIME 3

where σ1 and σ2 are pointwise nonlinearities. In SRNs, tanh is the common choice for the
nonlinearity, but relus and other choices may also be used.

1.2 Backprop through time

Backprop is only defined for DAGs and RNNs are not DAGs. To apply backprop to RNNs,
we unroll the net for T timesteps, which creates a DAG representation of the truncated RNN,
and then do backprop through that DAG. This is known as backpropagation through
time or BPTT.

This approach yields exact gradients of the loss w.r.t. the parameters when T is equal
to total number of timesteps the RNN was run for. Otherwise, BPTT is an approximation
that truncates the true computation graph. Essentially, BPTT ignores any dependencies in
the computation graph greater than length T .

As an example of BPTT, suppose we want to compute the gradient of an output neuron

at timestep five with respect to an input at timestep zero, i.e.
∂xout5

∂xin0
. The forward pass

(black arrows) and backward pass (red arrows) would look like this, where we have only
drawn arrows for the subpart of the computation graph that is relevant to the calculation of
this particular gradient:

W W W W W

U U U U U U

V

time

xin

h

xout

What about the gradient of the total cost w.r.t. the parameters, ∂J
∂[W,U,V]? Suppose the

RNN is being applied to a video and predicts a class label for every frame of the video. Then
xout is a prediction for each frame and a loss can be applied to each xoutt . The total cost is
simply the summation of the losses at each timestep:

∂J

∂[W,U,V]
=

T∑
t=0

∂L(xoutt ,yt)

∂[W,U,V]
(1.5)

The graph for backprop has branching structure, which we saw how to deal with in Chapter
??:

U

V

L

U

V

L

U

V

L

U

V

L

U

V

L

U

V

L

U

V

L

W W W W W W

∑
J

time

xin

h

xout

4 CHAPTER 1. RECURRENT NEURAL NETS

1.2.1 The problem of exploding and vanishing gradients

Notice that the we can get very large computation graphs when we run an RNN for many
timesteps. The gradient computation involves a series of matrix multiplies that is O(T). For

example, to compute our gradient
∂xout5

∂xin0
in the example above involves the following product:

∂xoutt

∂xin0

=
∂xoutt

∂hT

∂hT

∂hT−1
· · · ∂h1

∂h0

∂h0

∂xin0

(1.6)

Suppose we use an RNN with relu nonlinearities. Then each term ∂ht

∂ht−1
equals RW, where

R is a diagonal matrix with 0’s or 1’s on the i-th diagonal element depending on whether
the i-th neuron is above or below zero at the current operating point. This gives a product
RTW · · ·R1W. In a worst case (for numerics), suppose all the relu are active; then we
have a product of T matrices W, which means the gradient is WT . If values in W are large,
the gradient will explode. If they are small, the gradient will vanish – basically, this system
is not numerically well-behaved. One solution to this problem is to use RNN units that have
better numerics, an example of which we will give in Section 1.4 below.

1.3 Stacking recurrent layers

A deep RNN can be constructed by stacking recurrent layers. Here is an example:

UL

VWL

U1

U2W1

time

xin

h1

...

hL

xout

To emphasize that the parameters are shared, we only show them once.
Here is code for a 2-layer version of this RNN:

in_dim, out_dim: input and output dimensionality

x : input data sequence

h_init: initial conditions of hidden state

T: number of timesteps to run for

first define parameterized layers

U1 = nn.linear(in_dim, hid_dim, bias=False)

U2 = nn.linear(hid_dim, hid_dim, bias=False)

W1 = nn.linear(hid_dim, hid_dim)

W2 = nn.linear(hid_dim, hid_dim)

V = nn.linear(hid_dim, out_dim)

then run data through network

h = h_init

for t in range(T):

h[1] = nn.tanh(W1(h)+U1(x[t]))

h[2] = nn.tanh(W2(h)+U2(x[t]))

x_out[t] = V(h[2])

We set the bias to be “False” for U1 and U2 since the recurrent layer already gets a bias
term from W1 and W2.

1.4. LSTMS 5

1.4 LSTMs

Long Short Term Memory layers, or LSTMs are a special kind of recurrent layer, that
is designed to avoid the vanishing and exploding gradients problem described in Section ??
[Hochreiter and Schmidhuber 1997]. The presentation of

LSTMs in this section
draws inspiration from a
great blog post by Chris
Olah [Olah 2015]

An LSTM is like a little memory controller. It has a cell state, c, which is a vector it
can read from and write to. The cell state can record memories and retrieve them as needed.
The cell state plays a similar role as the hidden state, h, from regular RNNs – both record
memories – but the cell state is built to store persistent memories that can last “long” (hence
the name long short term memory). We will see how next.

Like a normal recurrent layer, an LSTM takes as input a hidden state ht−1 and an
observation xt and produces as output an updated hidden state ht. Internally, the LSTM
uses its cell state to decide how to update ht−1.

First, the cell state is updated based on the incoming signals, ht−1 and xt. Then the cell
state is used to determine the hidden state ht to output. Different subcomponents of the
LSTM layer decide what to delete from the cell state, what to write to the cell state, and
what to read off the cell state.

One component picks the indices of the cell state to delete:

ft = σ(Wfht−1 + Ufxt + bf) / decide which indices to forget (1.7)

ft is a vector of length equal to the length of the cell state ct. σ is the sigmoid function,
which outputs values in the range [0, 1]. The idea is that most values in ft will be near either
1 (remember) or 0 (forget). Later ft will be pointwise multiplied by the cell state to “forget”
the values where ft is zero.

Another component chooses what values to write to the cell state, and where to write
them:

it = σ(Wiht−1 + Uixt + bi) / which indices to write to (1.8)

c̃t = tanh(WCht−1 + Ucxt + bc) / what to write to those indices (1.9)

it is similar to ft – it’s a vector values that are nearly 0 or 1 of length equal to the length of
the cell state – and it determines which indices of c̃t will be written to the cell state. Next
we use these vectors to actually update the cell state:

ct = ft � ct−1 + it � c̃t / update the cell state (1.10)

Finally, given the updated cell state, we read from it and use the values to determine the
hidden state to output:

ot = σ(Woht−1 + Uoxt + bo) / which indices of cell state to use (1.11)

ht = ot � tanh(Ct) / use these to determine next hidden state (1.12)

The basic idea is it should be easy, by default, not to forget. The cell state controls what is
remembered. It gets modulated, but ft and c̃t can learn to be zero so no change occurs and
information propagates forward through an identity connection. This idea is similar to the
idea of skip connections and residual connections in ResNets (Chapter ??).

6 CHAPTER 1. RECURRENT NEURAL NETS

Bibliography

J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

C. Olah. Understanding lstm networks, 2015. URL
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

7

