Chapter 1

Transformers

Draft chapter from Torralba, Isola, Freeman (this is a computer vision textbook, hence the
emphasis on CNNs; note that transformers are also very related to GNNs)

Transformers are a recent family of architectures that generalize and expand the ideas
behind CNNs. The term for this family of architectures was coined by [Vaswani et al. 2017],
where they were applied to language modeling. Our treatment in this chapter more closely
follows the “Vision Transformers” introduced in [Dosovitskiy et al. 2021].

Like CNNs, transformers factorize the signal processing problem into stages that involve
independent and identically processed chunks. However, they also include layers that mix
information across the chunks, called “attention layers”, so that the full pipeline can model
joint dependences between the chunks.

1.1 A limitation of CNNs:
apart patches

independence between far

CNNs are built around the idea of locality: different local regions of an image can safely be
processed independently. This is what allows us to use filters with small kernels. However,
very often, there is global information that needs to be shared across all receptive fields in
an image. Convolutional layers are not well-suited to globalizing information since the only
way they can do so is by either increasing the kernel size of their filters, or by stacking layers
to increase the receptive field of neurons on deeper layers.

How can we efficiently pass messages across large spatial distances? We already have
seen one option: just use a fully-connected layer, so that every output neuron after this layer
takes input from every neuron on the layer before. However, fully-connected layers have a
ton of parameters — N2 if their input and output are N-dimensional vectors — and it can
take an exorbitant amount of time and data to fit all those parameters. Can we come up
with a more efficient strategy?

1.2 The idea of attention

Attention is a strategy for processing global information efficiently, focusing just on the parts
of the signal that are most salient to the task at hand. The idea can be motivated by attention
in human perception. When we look at a scene, our eyes flick around and we “attend to”
certain elements that stand out, rather than taking in the whole scene at once [Wolfe 2000).
If we are asked a question about the color of a car in the scene, we will move our eyes to
look at the car, rather than just staring passively. Can we give neural nets the same ability?

In neural nets, attention follows the same intuitive idea. A set of neurons on layer [4 1
may attend to a set of neurons on layer [, in order to decide what their response should be.
If we “ask” that set of neurons to report the color of any cars in the input image, then they

Transformers were
originally introduced in
the field of natural
language processing,
where they were used to
model language —
sequences of characters
and words. As a result,
some texts present
transformers as an
alternative to RNNs for
sequence modeling, but in
fact transformer layers
are parallel processing
machines, like
convolutional layers,
rather than a sequential
machine, like recurrent
layers. Therefore, we will
present transformers as
more related to CNNs
than RNNs.

Although we are only
considering vector-valued
tokens in this chapter, it’s
easy to imagine tokens
that are any kind of
structured group. We
just need to define how
basic operators, like
summation, operate over
these groups (and,
ideally, in a differentiable
manner).

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are different kinds of groups of
neurons — channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are different from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token ¢ will be labeled as t.z.

Transformers consist of two main operations over tokens: 1) mizing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pizel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pizels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

tokens ‘ D D D D

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

1.3. A NEW DATA TYPE: TOKENS 3

A linear combination of tokens is not the same as a fully connected layer in a neural net.
Instead of taking a weighted sum of scalar neurons, it takes a weighted sum of token code
vectors:

N

Tout = Z Wi Tin, < linear comb of neurons (1.1)
i=1
N

tout -2 = Z Witin,; .2 < linear comb of tokens (1.2)
i=1

Linear combination of neurons Linear combination of tokens

Lout O tout
Xin t in

Operations over tokens can be defined just like operations over neurons except that the
tokens are vector-valued while the neurons are scalar-valued. Most layers we have seen can
be defined for tokens in an analogous way to how they were defined for neurons, like we saw
with the token linear combination.

For example, we define an fc-layer over token codes as a mapping from N7 input tokens to
N> output tokens, parameterized by a matrix W € R¥2XM (and, optionally, a set of biases
b € RM2*M (for token’s with M-dimensional code vectors).

For vector-valued tokens, these layers can be written compactly by defining Z;, €
and Zoge € RV2XM a5 matrices whose rows are M-dimensional token code vectors (transposed
since by convention we use column vectors in this book):

RN1><M

tl.ZT
ty.zt
Then the fc-layer over token codes can be written as:
Zowe = WZi, +b < fe-layer over token codes (1.4)

Notice how the structure is analogous to fc-layers over neurons, except that the elements
of the input are vector-valued. We can proceed in this fashion and make analogous token
layers for any neuron-layer. For example, we could define a convolution layer over tokens as
just like a convolution over neurons except that each weighted sum is a linear combination
of tokens rather than a linear combination of neurons. Let’s write this out for the simple
case of 1D convolution with a single filter w over a 1D array of token code vectors:

touwt.Z = Wk tin.z 4 conv over token codes (1.5)
N
toulilz = Wlk|ti[i — k].2 (1.6)
k=—N

This layer is not currently popular but maybe it will be in the future. For any neural layer
you come across, you may want to consider: what if I make it a token layer instead?

1.3.3 Modifying tokens

Linear combinations only let us linearly mix and recombine tokens, and stacking linear
functions can only result in another linear function. In standard neural nets, we ran into

As notational
convenience, in this
chapter we define

Xip = [Z1,...,zN] and
tin = [tl, e 7t]\/']

This notation is compact
and turns working with
tokens into an exercise in
matrix algebra. However,
the notation here is also
somewhat limiting, as it
only applies to
vector-valued tokens.
What if we want tokens
that are tensor-valued, or
tokens whose codes are
elements of an abstract
group such as SO(3)?
There is not yet standard
notation for working with
tokens like this. As you
read this chapter try to
think about how the
operations we define for
standard vector-valued
tokens could be instead
defined for other kinds of
tokens.

This is such a
fundamentally useful idea
that it shows up in many

different fields under
different names. One
general name for it is
factorizing a problem
into smaller pieces.

4 CHAPTER 1. TRANSFORMERS

the same problem with fully-connected and convolutional layers, which, on their own, are
incapable of modeling nonlinear functions. To get around this limitation, we added pointwise
nonlinearities to our neural nets. These are functions that apply a nonlinear transformation
to each neuron individually, independently from all other neurons. Analogously, for “token
networks” we will also introduce “pointwise” operators — these are functions that apply a
nonlinear transformation to each token individually, independently from all other tokens.
Given a nonlinear function Fy : RNV — R a token-wise nonlinearity layer can be expressed
as:

tous = [Fo(t1.2),..., Fo(tn.2z)) < per-token nonlinearity (1.7)

Notice that this operation is generalization of the pointwise nonlinearity in regular neural
nets; a relu layer is the special case where N = 1 and Fy = relu:

Xout = [relu(zy),...,relu(zy)] < per-neuron nonlinearity (relu layer) (1.8)

Fy may be any nonlinear function but some choices will work better than others. One
popular choice is for Fy to be an MLP (multi-layer perceptron; see chapter ?7). In this case,
Fj has learnable parameters € which are the weights and biases of the MLP. This reveals an
important difference between pointwise operations in regular neural nets and in token nets:
relus, and most other neuron-wise nonlinearities, have no learnable parameters, whereas Fy
typically does. This is one of the interesting things about working with tokens, the pointwise
operations become expressive and parameter-rich.

CNNs in disguise Pointwise operations apply the same operation independently and
identically to all elements of an input array. Where have we seen that before? That’s
right, convolution! In Chapter ?? we emphasized that the key idea of CNNs is to break up
an input signal into chunks and process each chunk independently and identically. While
a single convolutional layer is linear, a full CNN is a “pointwise” nonlinear function over
patches of the input signal — and that’s precisely what a per-token MLP is, just with patches
of spatial size 1x1.

So, for any per-token MLP, there is an equivalent CNN, which only uses kernels of size
1x1. Moreover, the first step in a token-net — tokenizing the input by vectorizing k x k
patches — can also be represented as a convolutional layer: in this case there are N filters
of size k x k, each of which picks out a single pixel in the image patch, to create N output
channels that correspond to the vectorized patch. Really, the only new thing in token nets
(and transformers, as we will see) is the attention layer. Otherwise, transformers are just
CNNs in disguise.

As an exercise, we write out below two equivalent views of a per-token MLP, first as a
pointwise nonlinearity over tokens and second as a CNN over neurons. The MLP is of the
form linear-relu-linear, and the input is a 1D tensor of tokens ti,, which can equivalently
be represented as a 2D tensor of neurons X;, whose rows are the token codes:

tout = [Fg(tl.z),...7F9(tN.Z)] (1.9)
Per-token MLP over t;y:
a=[Wit1.z+by,..., Witn.z + by] 4 per-token linear (1.10)
h = [relu(a;),...,relu(ay)] <4 relu (1.11)
touwr = [Wahy + ba),..., Wahy + bs] 4 per-token linear (1.12)

Equivalent CNN over X;:
al, k| = Z Wile, k] x Xin + b1]k] VE 4 conv (1.13)

h = [relu(h[l,:]),...,relu(h[N,:])] <4 relu (1.14)
Xoue[:, k] = Y Wale, k] xh+by[k] Vk 4 conv (1.15)

1.4. TOKEN NETS)

1.4 Token nets

We will use the term token nets to refer to computation graphs that use tokens as the
primary nodes, rather than neurons. Token nets are just like neural nets, alternating between
layers that mix nodes in linear combinations (e.g., fully-connected linear layers, convolutional
layers, etc) and layers that apply a pointwise nonlinearity to each node (e.g., relus, per-token
MLPs). Of course, since tokens are simply groups of neurons, every token net is itself also a
neural net, just viewed differently — it is a net of sub-nets. Below we show a standard neural
net and a token net side by side, to emphasize the similarities in their operations:

Token net

gy

Neural net

o O O

linear comb of neurons > linear comb of tokens >

neuron-wise nonlinearity > token-wise nonlinearity >

linear comb of neurons > linear comb of tokens >

The arrows here represent any functional dependency between the nodes (note that dif-
ferent arrows represent different types of functions).

1.5 The attention layer

Attention layers define a special kind of linear combination of tokens. Rather than param-
eterizing the linear combination with a matrix of free parameters W, attention layers use a
different matrix, which we call the attention matrix A. The important difference between A
and W is that A is data-dependent, that is, the values of A are a function the data input
to the network. In the diagram below, we indicate the data-dependency with the function
labeled f, and we color the attention matrix red to indicate that it is constructed from
transformed data rather than being free parameters (for which we use the color blue):

fc layer attn layer
tout D D
1N\

s []]]

The equation for an attention layer is the same as for a linear layer except that the weights
are a function of some other data (left unspecified for now but we will see concrete examples
below):

< attention

A=f(.)
Zows = AZ;,

(1.16)
(1.17)

The key question, of course, is “what exactly is f”? What inputs does f depend on and
what is f’s mathematical form? Before writing out the exact equations, we will start with
the intuition: f is a function that determines how much “attention” to apply to each token

Note that the
terminology in this
chapter is not standard.
The term “token nets”,
and the token layer
definitions we have given,
are our own invention.

Here we make the
connection between
attention and fc layers.
You can also make the
connection between
attention and pooling
layers. From that
perspective attention is a
kind of dyanmic pooling:
it’s mean pooling but
with a weighted average
where the weights are
dynamically decided
based on the input data.

The idea of keys, queries,
values comes from
databases, where a

database cell holds a
value, which is retrieved
when a query matches
the cell’s key. Tokens are
like database cells and
attention is like retrieving
information from the
database of tokens.

6 CHAPTER 1. TRANSFORMERS

in tin; since this layer is just a weighted combination of tokens f is simply determining the
weights in this combination. f can depend on any number of input signals that tell the net
what to pay attention to.

As a concrete example, consider that we want to be able to ask questions about different
objects in an image, such as “what color is the bird’s head?” Then we can use attention to
direct the model to focus on just the object in question — the bird’s head in this example. f
would take as input the text query, and would produce as output weights A that are high
for the t;, tokens that correspond to any bird head’s and are low for all other t;, tokens. If
we train such as system to answer questions about color, then the token codes might end up
representing the color of the object in their receptive field; after all, this would be a solution
that would solve our problem (it would minimize the loss and correctly answer the question).
Other solutions might be possible, but we will focus on this intuitive solution.

What’s neat here is that attention gives us a way to make the layer dynamically change
its behavior in response to different input questions; asking different questions results in
different answers:

tout

+ . attention

.
g

What What
color is color is
the bird’s the

head vegetation

Figure 1.1: How attention can be allocated across different regions (tokens) in an image. The
token codes are indicated as the colored rectangles within each token. t.,; is a weighted sum
over tokens in ti,, weighted by attention. Only the tokens that contribute most to this sum
are visualized here. On the left, the tokens corresponding to the brids’ heads are attended
to, whereas on the right, tokens in the background are attended to.

Keeping this intuitive picture in mind, we will now turn to the equations that define f.
We will focus on the particular version of f that appears in transformers, which is called
query-key-value attention.

1.5.1 Query-Key-Value attention

Transformers use a particular kind of attention based on the idea of keys, queries, and values.
In query-key-value attention, each token is associated with a query vector, a key vector, and
a value vector. Just like the token’s code vector, we can think of these vectors as additional
members of the structure ¢t. We define these vectors as linear transformations of the token’s

1.5. THE ATTENTION LAYER 7

code vector. For a token with code vector z, we have:

q=t.query() = W,z < query (1.18)
k = tkey() = Wiz < key (1.19)
v = t.value() = W,z < value (1.20)

The queries, keys, and values of t;, can compactly be written as matrices:

al ki vi
Qin=| Kin =1 : Vin = (1.21)
ay kY vi

In transformers, all inputs to the net are tokenized, so the textual question “What color is
the bird’s head” will also be represented as a token. This token will submit its query vector,
Qquestion t0 be matched against the keys of the tokens that represent different patches in
the image; the similarity between the query and the key determines the amount of attention
weight that query will apply to the token with that key. The most common measure of
similarity between a query q and a key v is the dot product q7v. Querying each token in ti,
in this way gives us a vector of similarities. We then normalize this vector using the softmax
function to give us our attention weights A, and finally, rather than applying A over token
codes directly (i.e. taking a weighted sum over tokens), we take a weighted sum over token
values to obtain Zgy:

5= [qgl'lestionkh e ?qg:lestionkN] (122)
A = softmax(s) (1.23)
Zows = AV, (1.24)

Figure 1.2 visualizes these steps:

tO'llt

} key ()

v v v ¥
1 :_|:| 0.2:_|:| 0.9:_|:| 0A1:_|:|
A «

‘-—3:"':’:::::::::22'.'.’.' --------- } query ()

What color
is the

[}bird’s
head

Figure 1.2: Mechanics of an attention layer. Queries from the question match keys from the
tokens representing bird heads; value vectors of these two tokens then contribute the most
to the sum that yields tou’s code vector. (Softmax omitted in this example.)

Question to think about:
could you use other
differentiable functions
for query(), key(), and
value()? Would that be
useful?

We do not cover them in
this book but methods
from natural language
processing can be used to
transform text into a
token, or a sequence of
tokens.

We use the following
color scheme here and
later in this chapter:

query key value

I .

The nodes outlined in
blue correspond to each
other; they represent one
query being matched
against one key to result
a scalar similarity value,
in the gray box, which
acts as a weight in the

weighted sum computed
by A.

8 CHAPTER 1. TRANSFORMERS

1.5.2 Self-attention

As we have now seen, attention is a general-purpose way of dynamically pooling information
in one set of tokens based on queries from a different set of tokens. The next question we will
consider is: “which tokens should be doing the querying and which should we be matching
against?” In the example from the last section, the answer was intuitive because we had a
textual question that was asking about content in a visual image, so naturally the text gives
the query and we match against tokens that represent the image. But can we come up with
a more generic architecture where we don’t have to hand design which tokens interact in
which ways?

Self-attention is just such an architecture. The idea is that on a self-attention layer, all
tokens submit queries, and for each of these queries, we take a weighted sum over all tokens
in that layer. If t;, is length IV then we have N queries, N weighted sums, and N output
tokens to form toyue:

self attn layer

w []]

o }> !

The equations for self-attention can be written in an especially compact form:

Qin =Zin W, N query matrix (1.25)
Kin =22 Wy, 4 key matrix (1.26)
Vin =272y, W, < value matrix (1.27)
QinKz; . .
A = f(tin) = softmax(——=") q attention matrix (1.28)
Vd
Zout = AVin (129)

d is dimensionality of the query/key vector (since we take a dot product between query and
key their dimensionalities must match). In expanded detail, here are the full mechanics of
an attention layer:

self attn layer (expanded)

2 []
N

M
—
-« N = ny 3
 I—

Qin; Kina Vin

ARR

This fully defines a self-attention layer, which is the kind of attention layer used in
transformers. Before we move on though, let’s think through the intuition of what self-
attention might be doing.

Consider that we are processing the Guineafowl image and our task is semantic segmen-
tation (label each patch with an object class). First, we tokenize the image so that each

1.5. THE ATTENTION LAYER 9

patch is represented by a token. Now we have a token, t;, that represents the patch of pixels
around of the birds’ heads. We wish to update this token via one layer of self-attention.
Since the goal of the network is to classify patches, it would make sense to update t; to
get a better semantic representation of what’s going on in that patch. One way to do this
would be to attend to the tokens representing the other bird heads, and use them to refine
t1. The intuition is that it’s easier to recognize an object given three views of it (the three
tokens representing bird heads). The refinement operation is just to sum over the token code
vectors, which has the effect of reducing “noise” that is not shared between the three tokens
and amplifying the commonalities between them. Figure 1.3 illustrates this scenario.

attention

Figure 1.3: One way self-attention could be used to aggregate information across all patches
containing the same object, and thereby arrive at a better representation of this object.

This is just one way self-attention could be used by the network. How it is actually used
will be determined by the training data and task. What really happens might deviate from
our intuitive story: tokens on hidden layers do not necessarily represent spatially localized
patches of pixel. While the initial tokenization converts patches to pixels, after this point at-
tention layers can mix information across spatially distant tokens — touy1 does not necessarily
represent the same spatial region in the image as tip1.

In fact, attention layers are permutation equivariant:

attn(permute(t;,)) = permute(attn(tiy)) (1.30)

where permute is a permutation of the indices of the vector t;,. This means that if you
scramble (i.e. permute) the patches in the input image then apply attention, the output will
be unchanged up to a permutation of the original output. It is often useful to understand
layers in terms of their invariances and equivariances. Convolutational layers are transla-
tion equivariant but not necessarily permutation equivariant whereas attention layers are
both translation equivariant and permutation equivariant (since translation is a special kind
of permutation, any permutation equivariant layer is also translation equivariant). Note,
however, that 1x1 convolutions are a special case of convolution that is in fact permutation
equivariant, because they are operate pointwise. Other layers can be catalogued similarly:
global average pooling layers are permutation invariant, relu layers are permutation equiv-
ariant, per-token MLP layers are also permutation equivariant (but w.r.t. vectors of tokens

10 CHAPTER 1. TRANSFORMERS

rather than vectors of neurons), and so on. As we will see below, transformers only use lay-
ers that are permutation equivariant, so the entire transformer architecture is permutation
equivariant over its input tokens.

A generally good strategy is to select layers that reflect the symmetries in your data
domain or task: in object detection, translation equivariance makes sense because, roughly,
a bird is a bird no matter where it appears in an image. Permutation equivariance might
also make sense, for that same reason, but only to an extent: if you break up an image into
small patches and scramble them then this could disrupt spatial layout that is important
for recognition. We will see in Section 1.7 how transformers use something called positional
codes to re-insert useful information about spatial layout.

1.6 The full transformer architecture

A full transformer architecture is a stack of self-attention layers interleaved with token-wise
nonlinearities. These two steps are analogous to linear layers interleaved with neuron-wise
nonlinearities in an MLP:

MLP Transformer (vanilla)

o O O D D D

linear self attn <> !

relu
(neuron-wise)

linear self attn ﬁ}ﬁ

Beyond this basic template, there are many variations that can be added, resulting in
different particular architectures within the transformer family. Some common additions are
normalization layers and residual connections.

token wise)

1.6.1 Multihead self-attention

Additionally, it is common to use multihead self-attention, or MSH, which simply con-
sists of running k attention layers in parallel, applied to the same input t;,, then concate-
nating all the outputs, and finally projecting back to the original dimensionality of t;,:

attng (tin).z7

N
|

: (1.31)
attny(tin).z7
tous.z = WZ a4 W ¢ RMz2xkM (1.32)

‘W are learnable parameters of this layer (in addition to the query, key, and value projections
parameters for each of the k attention heads), M; is the dimensionality of the value vectors
and My is the dimensionality of the code vectors of the output ([Dosovitskiy et al. 2021]
recommends setting kM; = Ms).

1.6.2 Input and output modules

The transformer also has an input and output module. The input module is the tokenization
layer that converts the input signal into a set of tokens. The output module converts the

1.6. THE FULL TRANSFORMER ARCHITECTURE 11

transformed tokens into a target prediction or decision. The input and output modules are
specific to the type of input signal and the type of output task.

12 CHAPTER 1. TRANSFORMERS

Here is what the transformer looks like as a whole: Notice that most of the operations

I
m - i

" attention

are familiar from the regular CNNs from Chapter ?7. As discussed in Section 1.3.3, the per-
token MLP layers are equivalent to CNNs with 1x1 spatial kernels. By a similar argument,
it can be shown that the query, key, and value functions are equivalent to 1x1 convs over
token code vectors (we leave this as an exercise to the reader). Normalization layers, softmax
layers, and residual connections also appear in CNNs. The main novelty of transformers is
the self-attention layer. These layers look like fc-layers but are importantly different in two
ways:

1. They operate over tokens rather than neurons.
2. The transformation parameters are a function of the input data.

Therefore, we can see that transformers are intimately connected to both MLPs and
CNNs, but differ from both in important ways.

1.7 Positional encodings

Another idea associated with transformers is positional encoding. Operations over tokens
in a transformer are permutation equivariant, which means that we can shuffle the positions
of the tokens and nothing substantial changes (the only change is that the outputs get
permuted). A consequence is that tokens do not naturally encode their position within the
representation of the signal. Sometimes we may wish to retain positional knowledge, for
example, knowing that a token is a representation of the top region of an image can help us
identify that the token is likely to represent sky. Positional encoding concatenates a code
representing position within the signal onto each token. If the signal is an image, then the
positional code should represent the x and y coordinate. However, it need not represent
these coordinates as scalars — more commonly we use a periodic representation of position,

1.8. COMPARING FC, CONV, AND ATTN 13

where the coordinates are encoded as the vector of values a set of sinusoidal waves take on
at each position:

p. = [sin(z), sin(z/B),sin(x/B?), ..., sin(z/BF)] (1.33)
py = [sin(y),sin(y/B),sin(y/B?),...,sin(y/B")) (1.34)

where z and y are the coordinates of the token.

While positional encoding is useful and common in transformers, it is not specific to this
architecture. The same kind of encodings can be useful for CNNs as well, as a way to make
convolutional filters that are conditioned on position, thereby applying a different weighted
sum at each location in the image [Liu et al. 2018]. Positional encodings also appear in many
graphics applications, e.g., [Mildenhall et al. 2020].

1.8 Comparing fc, conv, and attn

Many layers in deep nets are special kinds of affine transformations. Three we have seen
so far are fc layers, conv layers, and self-attention layers. All these layers are alike in that
their forward pass can be written as Xqo; = WXi, + b for some matrix W and some
vector b. In conv and attn layers, W and b are determined as some function of the input
Xin. In conv layers this function is very simple: just make a Toeplitz matrix that repeats
the convolutional kernel(s) to match the dimensionality of X;,. In self-attention layers the
function that determines W is a bit more involved, as we saw above, and typically we don’t
use biases b.

Each of these layers can be represented as a matrix, and examining the structure in these
matrices can be a useful way to understand their similarities and differences. The matrix for
an fc layer is full rank, whereas the matrices for conv and self-attention layers have low-rank
structure, but different kinds of low-rank structure. Below we show what these matrices look
like, and also catalogue some of the other important properties of each of these layers:

Wiring graph Matrix Properties

Fixed input dim

N? learnable parameters

Variable input dim

k learnable parameters (k = kernel size)

conv(translate(xi,)) = translate(conv(Xi,))

—_

0 000000
000000

Variable input dim
qkv learnable parameters (# params in query(), key (), and value())

attn(permute(ti,)) = permute(attn(ti,))

®

beJe)ele)e]

I
1

I

14

CHAPTER 1.

TRANSFORMERS

Bibliography

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is
worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

R. Liu, J. Lehman, P. Molino, F. P. Such, E. Frank, A. Sergeev, and J. Yosinski. An
intriguing failing of convolutional neural networks and the coordconv solution. arXiv
preprint arXiw:1807.03247, 2018.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. In FEuropean conference
on computer vision, pages 405—421. Springer, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998-6008, 2017.

J. M. Wolfe. Visual attention. Seeing, pages 335-386, 2000.

15

