Chapter 1

Neural nets

Draft chapter from Torralba, Isola, Freeman

Neural nets are functions loosely modeled on the brain. In the brain, we have billions of
neurons that connect to one another. Each neuron can be thought of as a node in a graph,
and the edges are the connections from one neuron to the next. The edges are directed —
electrical signals propagate in just one direction along the wires in the brain:

XX

Outgoing edges are called axons and incoming edges are called dendrites. A neuron
“fires”, sending a pulse down its axon, when the incoming pulses, from the dendrites, exceed
a threshold.

1.1 The perceptron: a simple model of a single neuron

Let’s consider a neuron, shaded in gray, that has four inputs and one output:

A simple model for this neuron is the perceptron. A perceptron is a neuron with N

inputs {z;}}¥., and one output y, that maps inputs to outputs according to the following
equations:

o—0

N
z=f(x)= Zwixi +b=wlx+b < linear layer (1.1)
i=1
1, if 2>0
g(z) = nos . < activation function (1.2)
0, otherwise

y=g(f(x)) < perceptron (1.3)

In words, we take a weighted sum of the inputs and, if that sum exceeds a threshold
(here 0), the neuron fires (outputs a 1). The function f is called a linear layer because it
computes a linear function of the inputs, w”x, plus a bias, b. The function g is called the
activation function because it decides whether the neuron “activates” (fires).

Mathematically, f is an
affine function, but by
convention we call it a
“linear layer”. One way
to think of it is f is a
linear function of [x,1].

2 CHAPTER 1. NEURAL NETS

1.1.1 The perceptron as a classifier

People got excited about perceptrons in the late 1950s because it was shown that they can
learn to classify data [Rosenblatt, 1957]. Let’s see how that works. We will consider a
perceptron with two inputs, 1 and x2, and one output, y. Let the incoming connection
weights be w; = 2, we =1, and b = 0. z and y, as a function of z; and zo, look like this:

z Y
1 1 3
2
@—® = o ’
-2
-1 -1 -3
-1 0 1 -1 0 1

1 Z1

y takes on values 0 or 1, so you can think of this as a classifier that assigns a class label
of 1 to the upper-right half of the plotted region.

1.1.2 Learning with a perceptron

So a perceptron acts like a classifier, but how can we use it to learn? The idea is that given
data, {x(z),y(z) N ., we will adjust the weights w and the bias b, in order to minimize a
classification loss, L:

N
1 .)
w*,b" = argmin — LwTx® 4+ p,y® 1.4
g 3 £) (1.9)
In the picture above, this optimization process corresponds to shifting and rotating the
classification boundary, until you find a line that separates data labeled as y = 0 from data
labeled as y = 1:

Bad fit Okay fit Good fit
7 misclassifications 4 misclassifications 0 misclassifications
1 1 1

You might be wondering, what’s the exact optimization algorithm that will find the
best line that separates the classes? The original perceptron paper proposed one particular
algorithm, the “perceptron learning algorithm”. This was an optimizer tailored to the specific
structure of the perceptron. Older papers on neural nets are full of specific learning rules
for specific architectures: the “delta rule”, the “Rescorla-Wagner” model, and so forth.
Nowadays we rarely use these special-purpose algorithms. Instead, we use general-purpose
optimizers like gradient descent (for differentiable objectives) or zero-th order methods (for
non-differentiable objectives). The next chapter will cover the backpropagation algorithm,
which is a general-purpose gradient-based optimizer that applies to essentially all neural
nets we will see in this book (but, note that for the perceptron objective, because it has a
non-differentiable threshold function, we would instead opt for a zero-th order “blackbox”
optimizer).

1.2. MULTILAYER PERCEPTRONS 3

1.2 Multilayer perceptrons

Perceptrons can solve linearly separable binary classification problems, but they are otherwise
rather limited. For one, they only produce a single output. What if we want multiple
outputs? We can achieve this by adding edges that “fan out” after the perceptron:

X y

This network maps an input layer of data x to a layer of outputs y. The neurons in
between inputs and outputs are called hidden units, shaded in gray. Here, z is a pre-
activation hidden unit and h is a post-activation hidden unit, i.e. h = g(z) where g(-) is
an activation function like in Eqn. 1.2.

More commonly we might have many hidden units in stack, which we call a hidden
layer:

How many layers does
this net have? Some texts
will say two [W1, Wy,
others three [x, {z, h}, y],
others four [x, z, h, y].
We must get comfortable
with the ambiguity.

w, W,

Because this network has multiple layers of neurons, and because each neuron in this net
acts as a perceptron, we call it a multilayer perceptron, or MLP. The equation for this
MLP is:

z=W;x+by < linear layer (1.5)
h = g(z) <4 activation function
y = Wsh+ by < linear layer (1.7)

In general, MLPs can be constructed with any number of layers following this pattern: linear
layer, activation function, linear layer, activation function, ...

The activation function g could be the threshold function like in Eqn. 1.2, but more
generally it can be any pointwise nonlinearity, that is, g(h) = [§(h1),...,gd(hn)] and g is any
nonlinear function mapping R — R.

Beyond MLPs, this kind of sequence — linear layer, pointwise nonlinearity, linear layer,
pointwise nonlinearity, and so on — is the prototpyical motif in almost all neural networks,
including most we will see later in this book.

1.3 Deep nets

Deep nets are neural nets that stack the above motif many times:

heron

Linear
Non-linearity
l
|
|
l

L is the number of layers
in the net

4 CHAPTER 1. NEURAL NETS

Each layer is a function. Therefore, a deep net is a composition of many functions:

f&) = fL(foal - f2(f1(x)))) (1.8)

These functions are parameterized by weights [W1,..., W] and biases [by,...,br]. Some
layers we will see later have other parameters. Collectively, we will refer to the concatenation
of all the parameters in a deep net as 6.

Deep nets are powerful because they can perform nonlinear mappings. In fact, a deep
net with sufficiently many neurons can fit almost any desired function arbitrarily closely.
The universal approximation theorem [Cybenko 1989] states that this is true even for
a network with just a single hidden layer. The caveat is that the number of neurons in
the hidden layers will have to be very large in order to fit complicated functions. Also,
technically, this theorem only holds for continuous functions on compact subsets of RN — for
example a neural net cannot fit non-computable functions.

1.3.1 Activations vs parameters

When working with deep nets it’s useful to distinguish activations and parameters. The “acti-
vations” are the values that the neurons take on, [x,z1,hy,...,27_1,hy_1,y] —slightly abus-
ing notation, we use this term for both pre-activation function neurons and post-activation
function neurons. The activations are the neural representations of the data being processed.
Often, we will not worry about distinguishing between inputs, hidden units, and outputs to
the net, and simply refer to all data and neural activations in a network, layer by layer, as
a sequence [Xo,...,Xr], in which case xq is the raw input data.

Parameters, on the other hand, are the weights and biases of the network. These are the
variables being learned. Both data and parameters are tensors of variables.

Often we think of a layer as a function x;41 = fi+1(x;), but we can also make the
parameters explicit and think of each layer as a function:
X111 = fira(x,041) (1.9)

That is, each layer takes the activations from the previous layer, as well as parameters of the
current layer as input, and produces activations of the next layer. Varying either the input
activations or the input parameters will affect the output of the layer. From this perspective,
anything we can do with parameters, we can do with activations instead, and vice versa, and
that is the basis for a lot of applications and tricks. For example, while normally we learn
the values of the parameters, we could instead hold the parameters fixed and learn the values
of the activations that achieve some objective. In fact this is what is done in applications
such as style transfer, adversarial attacks, and network visualization, which we will see in
more detail in later chapters.

1.3.2 Fast activations and slow parameters

So what’s different about activations versus parameters? One way to think about it is that
activations are fast functions of a datapoint: they are the result of a few layers of processing
this datapoint. Parameters are also functions of the data — they are learned from data —
but they are slow functions of datasets: the parameters are arrived at via an optimization
procedure over a whole dataset. So, both activations and parameters are statstics of the
data, i.e. information extracted about about the data that organizes or summarizes it. The
parameters are a kind of meta-summary since they specify a functional transformation that
produces activations from data, and activations themselves are a summary of the data. It
looks like this:

1.3. DEEP NETS)

Data Parameters
(6) ()N
{x),y)}izl — Learner — 9 Statistic of the dataset

Data Activations
x® —>| Neural Net |—> b

Statistic of a datapoint

1.3.3 Deep nets can perform nonlinear classification

Let’s return to our binary classification problem from above, but now make the two classes
not linearly separable:

1 T T T

0
-0
0.5 0 00

o 0
O, .

) 0.5 01 °

—0. 70 11 11,
L

-1
—1-0.50 0.5 1
T

Here there is no line that can separate the zeros from the ones. Nonetheless, we will
demonstrate a multilayer network that can solve this problem. The trick is to just add more

' 028800

W,
Figure 1.1: A simple MLP network.

Consider using the following settings for W; and W:

-1 1

WlL 2

} ., Wo=[1 —1] (1.10)

The full net then performs the following operation:

21 = X1 — To, 29 =2x1+ T2 4 linear (1.11)
hi1 = max(z1,0), hg = max(z2,0) a4 relu (1.12)
z3="h1 — hs < linear (1.13)
y=1(z3 > 0) < threshold (1.14)

Here we have introduced a new pointwise nonlinearity, the relu function, which is like a
graded version of the threshold function we saw above, and performs better in practice.

Let’s visualize the values that the neurons take on as a function of 1 and x:

As can be seen in the rightmost plot above, at the output y, this neural net successfully
assigns a value of 1 to the region of the dataspace where the data points labeled as 1 live.
This example demonstrates that is possible to solve nonlinear classification problems with
a deep net. In practice, we would want to learn the parameter settings that achieve this

6 CHAPTER 1. NEURAL NETS

Y

1 3

2

1

g0 0
-1
—2
-1 -3

-1 0 1 -1 0 1

1 x

classification. One way to do so would be to enumerate all possible parameter settings and
pick one that successfully separates the 0’s from the 1’s. This kind of exhaustive enumeration
is a slow process, but don’t worry, in later chapters we will see how to speed things up using
methods from optimization (in particular, gradient descent). But it’s worth remarking that
enumeration is always a sufficient solution, at least when possible parameter values form a
finite set.

1.3.4 Learning with deep nets

Deep learning refers to learning with deep nets. Using the formalism we defined in Chapter
7?7, learning consists of using an optimizer to find a function in a hypothesis space, that
maximizes an objective. From this perspective, neural nets are simply a special kind of
hypothesis space.

Deep learning also usually involves using a particular optimization algorithm called back-
propagation, which we will see in the next chapter. However, it is certainly possible to
optimize neural nets with other methods. Indeed, it is not clear if biological neural nets
actually use backprogation. Alternative optimizers include genetic algorithms, simulated
annealing, and various other kinds of “random search”. There is also a broad literature on
“bottom up learning rules” that do not explicitly optimize any objective (though they may
implicitly). One such rule, called Hebbian learning, is “fire together, wire together”, that
is, we increase the weight of the connection between two neurons whenever the two neurons
are active at the same time.

1.4 Catalogue of layers

Below, we use the color blue to denote parameters and the color red to denote data/activations
(inputs and outputs to each layer).

Linear layers Linear layers are the workhorses of deep nets. Almost all parameters of the
network are contained in these layers — we call these parameters the weights and biases. We
have already introduced linear layers above. They look like this:

Xout = WxXip + b <linear (1.15)

Activation layers If a net only contained linear layers then it could only compute linear
functions. This is because the composition of N linear functions is a linear function. Acti-
vation layers add nonlinearity. Activation layers are typically pointwise functions, applying
a scalar to scalar mapping on each dimension of the input vector. Typically parameters of
these layers, if any, are not learned (but they can be). Some common activation layers are

1.4. CATALOGUE OF LAYERS 7

defined below:

1, if
e i >0 4 threshold (1.16)
0, otherwise
1
= 2 x sigmoid(2 x)—1 < tanh (1.18)
= max(riy,,0) 4 relu (1.19)
0 if >0
= ma>.<(0), i T 4 leaky-relu (1.20)
amin(ri,,,0), otherwise

Normalization layers Normalization layers add another kind of nonlinearity. Instead of
being a pointwise nonlinearity, like in activation layers, they are nonlinearities that perturbs
each neuron based on the collective behavior of a set of neurons. Let’s start with the example

of batch normalization [loffe and Szegedy 2015]. Recall from statistics that
Batchnorm standardizes each neural activation with respect to its mean and variance the standard score of a
over a batch of datapoints. Mathematically: draw of a random variable
—E[rsn] is h.ow. many st.andard
= ﬁ + 5 <4 batchnorm (1.21) deviations it differs from

T—p@
pranp

the mean: z =
~+ and [are learned parameters of this layer that maintain expressivity so that the layer
can output values with non-zero mean and non-unit variance. Most commonly batchnorm
is applied using training batch statistics to compute the mean and variance, which change
batch to batch. At test time, aggregate statistics from the training data are used. However,
using test batch statistics can be useful for achieving invariance to changes in the statistics
from training data to test data [Wang et al. 2020].
There are numerous other normalization layers that have been defined over the years.
One more that we will highlight is L normalization:

= — < L2-norm (1.22)
[l

This operation projects the inputs onto the unit hypersphere — quite a nice trick.
Output layers The last piece we need is a layer that maps a neural representation — a
high-dimensional array of floating point numbers — to a desired output representation. In
classification problems, the desired output is a class label, and the most common output
operation is the softmax function, which we have already encountered in previous chapters.
In image synthesis problems, the desired output is typically a 3D array with dimensions
N x M x 3, and values in the range [0, 255]. A sigmoid multiplied by 255 is a typical output
transformation for this setting. The equations for these two layers are:

e
= —— < softmax (1.23)
-
D k=1 €
= 255« sigmoid(ri,,) <4 common layer for image output problems (1.24)

In the softmax definition we have added a temperature parameter 7, which is commonly
used to scale how peaky, or confident, the predictions are.

The output layer is the input to the loss function, thus completing our specification of
the deep learning problem. However, to use the outputs in practice requires translating them
into actual pictures, or actions, or decisions. For a classification problem, this might mean
taking the argmax of the softmax distribution, so that we can report a single class. For
image prediction problems, it might mean rounding each output to an integral value since
common image formats represent RGB values as integers.

There are of course many other output transformations you can try. Often, they will
be very problem specific since they depend on the structure of the output space you are
targeting.

8 CHAPTER 1. NEURAL NETS

1.5 Data structures for deep learning: tensors and batches

The main data structure that we will encounter in deep learning is the tensor, which is just
a multi-dimensional array. This may seem simple, but it’s important to get comfortable with
the conventions of tensor processing.

In general, everything in deep learning is represented as tensors — the input is one tensor,
the activations are tensors, the weights are tensors, the outputs are tensors. If you have data
that is not natively represented as a tensor, the first step, before feeding it to a deep net, is
usually to convert it into a tensor format. Most often we use tensor of real numbers, i.e. in
R.

Suppose we have a dataset {x("),y(}N = of images x and labels y. The tensor way of
thinking about such a dataset is as two tensors, X € RNXHXWXC and Y € RV*K | The first
dimension of the tensor is the number of elements in our dataset. The remaining dimensions
are the dimensionality of the images (height by width by color channels) and labels (K-way
classification).

The activations in the network are also tensors. For the MLP networks we have seen so
far, the activation tensors have shape N x Cy, where Cy is the number of neurons on layer /¢,
sometimes also called “channels” in analogy to the color channels of the input image. In later
chapters we will encounter other architectures where the activation layers have additional
dimensions, for example, in convolutional networks we will see activation layers that are of
shape N x Hy x Wy x Cl.

One other important concept is batch processing. Normally, we don’t process one
image at a time through a neural net. Instead we run a batch of images all at once, and
they are processed in parallel. A batch sampled from the training data can be denoted as
{Xbatch,ybatch N"“fd‘, and the batch represented as a tensor has shape X € RNveten X HXWxC
and Y € RNoaean XK

The weights and biases of the net are also usually represented as tensors. The weights
and biases of a linear layer will be tensors of shape W, € RC+1%C and b, € RC+1,

As an example, we below visualize all the tensors associated a batch of 3 datapoints being
processed by the MLP in Fig. 1.1:

W, W,
X Bﬂ VA H, 1] Z, Y
—_— -> —_— —_—

where the capital letters are the batches of datapoints and activations corresponding to
the lowercase names of datapoints and hidden units in Fig. 1.1.

The above example shows the basic concept of working with tensors and batches for 1D
data, but, in vision, most of the time we will be working with higher-dimensional tensors.
For image data we typically use 4D tensors: batch x height x width x channels; for videos
we may use 5D tensors: batch X height x width X time x channels. 3D scans have an
additional “depth” spatial dimension; videos of 3D data could therefore be represented by
6D tensors. As you can see, thinking in terms of 2D matrices is not quite sufficient. Instead,
you should be imagining data processing as operating on ND tensors, sliced and diced in
different ways. As a step in this direction, you may find it useful to visualize tensors in 3D:

S

1.6. NEURAL NETS AS DISTRIBUTION TRANSFORMERS 9

This tensor could represent an H x W x C' color image. This is closer to the actual ND
tensors vision systems work with, and many concepts can be adequately captured just by
thinking in 3D. We will see some examples in later chapters.

1.6 Neural nets as distribution transformers

So far we have seen that deep nets are stacks of simple functions, which compose to achieve
interesting mappings from inputs to outputs. This section will introduce a slightly different
way of thinking about deep nets. The idea is think of each layer as a geometric transformation
of a data distribution.

Each layer in a deep net is a mapping from one representation of the data to another:
[Xin = Xous- If Xin and Xoye are both 1-dimensional, then we can plot the mapping as a
function with x;, on the x-axis and X, on the y-axis:

1

Xout

0.5

Xin

0.5 1

Now, we will instead consider a different way of plotting the mapping, where we simply
rotate the y-axis to be horizontal rather than vertical:

Xout
0 0.5 1
A A A 4244441
<~00-0 0600000
0 0.5 1
Xin

The depiction to the right makes it obvious that the plot Xq.w = Xin is the identity
mapping: datapoints get mapped to unchanged positions. Here are a few more mappings
plotted in this way:

Each of the above are layers that could be found in a deep net. Linear layers, like those
in the top row above, stretch and squash the data distribution. The relu nonlinearity maps
all negative data to 0, and applies an identity map to all non-negative data. The sigmoid
function pulls negative data to 0 and positive data to 1.

In this way, an incoming data distribution can be reshaped layer by layer into a desired
configuration. The goal of a binary softmax classifier, for example, is to move the datapoints
around until all the class 0 points end up moved to [1,0] on the output layer and all the class
1 end up moved to [0,1].

CHAPTER 1. NEURAL NETS

10
Xout Xout
-1-050 05 1 -1-050 05 1
A 4 4 4 A AAA 42
\ | l / A
\ \ I | / /’ I
\ | l ! / r, / I l
\ \ | I / U / I |
\ \ l ! / / f / I |
\ \ I i /’ / i I |
—) \ | I I i] I |
ow = 2| | L] X = Xt |0
\ \ I I | , f | I I
\ } ! 1 1 / / 1 I !
[[/ / I I I
Voo [/ ! ! 1 I
Vo | [/ / ! I |
\ | | 1 1 / / 1 1 |
«—0 0000 «~——0—0—0>
-1-05 0 05 1 -1-05 0 05 1
Xin Xin
Xout Xout
-1-050 05 1 -1-05 0 05 1
For o AR m
7! l l ’ , I
7 | | /o N I
’y I I /a ' /
e l l a f ;o
A I I oy ' ol
| l l - / ;o
_ fo I I . . oy / o
Xous = relu(Xiy) S | | Xous = Sigmoid(xiy) o
i 1 1 1 i 1 ! |
,/ 1 ! ! ! ,/ 1 1 1 |
/ 1 | | | ; 1 1 i |
/ I I I l / / I I 1
/ 1 ! ! ! / 1] 1 |
/ 1 | | | / 1 1 1 |
“~——0—0—0> “~——0—06—0>
—-1-05 0 05 1 -5 —-25 0 25 5
Xin Xin

A deep net stacks these operations, like so:

x(2)
-1-050 05 1
/A LY x
x(?) = relu(x™M) // / 3 3 3
T
x =924 xO [\ L)
—0 00—
-1-050 05 1
x(0)

The plots above show how a uniform grid of datapoints get mapped from layer to layer
in a deep net. We can also use this plotting style to show how a non-uniform distribution
of incoming datapoints gets transformed. This is the setting in which deep nets actually
operate, and sometimes the real action of the network looks very different when viewed
this way. We can think of a deep net as transforming an input data distribution, pgata,
into an output data distribution, puw;. Each layer of activations in a network is a different
representation or embedding of the data, and we can consider the distribution of activations
on some layer £ to be py,. Then, layer by layer, a deep net transforms pgata into p; into po,
and so on until finally transforming the data to the distribution p.y;. Most loss functions

1.6. NEURAL NETS AS DISTRIBUTION TRANSFORMERS 11

can also be interpreted from this angle: they penalize the divergence, in one form or another,
between the output distribution pe: and a target distribution prarget-

A nice property of the above way of plotting is that it also extends to visualizing 2D-to-2D
mappings (something that conventional x-axis/y-axis plotting is not well equipped to do).
Real deep nets perform ND-to-ND mappings, but already 2D-to-2D visualizations can give
a lot of insight into the general case.

Here are the linear and relu layers plotted this way, alongside other ways of representing
these mappings:

Wiring graph Equation Mapping 1D Mapping 2D
=W +b
O O /
O O = max(7i,,,0)
Oo—O0 /
O_’O ,/‘

Notice that the relu layer tends to map data density to the axes of the positive quadrant.
This is because relu snaps all negative coordinates to zero, so any point in the negative
subspace will end up mapping to an “edge” of the positive quadrant. The geometry of high-
dimensional neural representations may become very sparse because of this, where most of
the volume of representational space is not occupied by any datapoints.

1.6.1 Binary classifier example

Consider an MLP that performs binary classification formulated as 2-way softmax regression.
The input datapoints are each in R? and the target outputs are in A' (the 1-simplex), and
there is one 2D hidden layer (with pre- and post-activations). This network can be drawn

as follows:
x@—> @—®
*@—w
Or expressed in math as:

W

z1 = Wix+ by < linear (1.25)
h; = relu(z) <4 relu (1.26)
zo = Woh; + by < linear (1.27)
y = softmax(zz) < softmax (1.28)

Recall that the
N-simplex, A",
set of all N + 1
dimensional vectors
whose elements sum to 1.
Because the output of a
softmax is normalized to
sum to 1, the output of
the softmax is in AN.

N + 1 dimensional
one-hot codes live on the
vertices of A™.

is the

A checkpoint is a record
of the parameters at some
iteration of training, i.e.
if iterates of the
parameter vector are

6%, 6, ..., 0p, while
training for T' steps of
learning, then any #* can
be recorded as a
checkpoint.

12 CHAPTER 1. NEURAL NETS

Wi, b1, W2, b2 : parameters of the met
X : dataset to run through net

first define parameterized layers
fcl = nn.linear (W1, bil)
fc2 = nn.linear (W2, b2)

then run data through network
for x in X:

z1l = fcl(x)
hl = nn.relu(zl)
z2 = fc2(hl)

y = nn.softmax(z2)

Or in Pytorch-like pseudocode as:
Now we wish to train this net to classify between two Gaussian clouds of data, the red
cloud and the blue cloud here:

Training data

We can visualize how the net transforms the training dataset, layer by layer, at three
checkpoints over the course of training:

1.6. NEURAL NETS AS DISTRIBUTION TRANSFORMERS

13

N\

Y

w\ EEL

Training iteration

Now consider a harder classification problem. We will visualize a deeper net learning to
classify between two classes of datapoints that lie on two concentric circles:

Layer by layer, over the course of training, the net learns to disentangle these two classes
and pull the points toward vertices of the 1-simplex, i.e. to correctly classify the points!

—

4 CHAPTER 1. NEURAL NETS

} 1 :
. (e
i L i
'
- - -~
'
< - -
<- - -~
< - —
< < <
%
~

Training iteration

1.6.2 Visualizations beyond 2D

What if our representations are high-dimensional? The plots above only can visualize 1D
and 2D data distributions. Deep representations are typically much higher-dimensional than
this, and to visualize them, we need to apply tools from dimensionality reduction. These
tools project the high-dimensional data to a lower dimensionality, e.g. 2D, which can be
visualized. A common objective is to perform the projection such that the distance between
two datapoints in the 2D projection is roughly proportional to their actual distance in the
high-dimensional space. The below plot, reproduced from [Donahue et al. 2014], uses a
dimensionality reduction technique called t-SNE [Maaten and Hinton 2008] to visualize how
different layers of a deep net represent a dataset of images of different semantic classes, where
each color represents a different semantic class:

|11 2 ||]1]]

Layer 1 representation Layer 6 representation

1.6. NEURAL NETS AS DISTRIBUTION TRANSFORMERS 15

Notice that on the first layer, semantic classes are not well separated but by layer 6 the
representation has disentangled the semantic classes so that each class occupies a different
part of representational space. This is expected because layer 6 is near the output of the
network, and the output is being trained to be a one-hot representation of semantics —i.e. a
completely disentangled representation.

16

CHAPTER 1.

NEURAL NETS

Bibliography

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathemat-
ics of Control, Signals and Systems, 2(4):303-314, Dec 1989. ISSN 1435-568X. doi:
10.1007/BF02551274. URL https://doi.org/10.1007/BF02551274.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf:
A deep convolutional activation feature for generic visual recognition. In International
conference on machine learning, pages 647-655, 2014.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. International Conference on Machine Learning, pages 448-456,
2015.

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(Nov):2579-2605, 2008.

D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell. Fully test-time adaptation by
entropy minimization. arXww preprint arXiv:2006.10726, 2020.

17

