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In deep learning we encounter many different fields and each has its own notation. We
will stick to the following conventions throughout most of this course, and note it when
we deviate from these rules. To define the conventions we give examples of usage, from
which you can infer the pattern.

General notation

• Scalar: x, y, z.

• Vector: x,y, z. We use bold letters to represent vectors, matrices, and tensors.

• Index of a vector: xi, xj , yi, or x[i], x[j], y[i].

• Matrix: X, Y, Z. We use bold letters to represent vectors, matrices, and tensors.

• Index of a matrix: Xij , Yjk, Zii, or X[i, j], Y [j, k], Z[i, i].

• For an indexed matrix Xij or X[i, j], i indexes rows and j indexes columns. We use
non bold font because Xij and X[i, j] are scalars.

• Slice of a matrix: Xi or X[i, :]; X[:, j]. Here is one example:

X =

1 2
3 4
5 6

 X[2, :] =
[
3 4

]
• Tensor (i.e., multidimensinoal arrays): Typically, we will use lowercase bold vari-

ables to represent tensors, for example, x. This is because tensors can have any num-
ber of dimensions (they can be one-dimensional, two-dimensional, three-dimensional,
and so on). Furthermore, we will often define operators that are agnostic to the di-
mensionality of the tensor (they apply to N -dimensional arrays, for any N ). How-
ever, in some sections, we use uppercase to make a distinction between tensors of
different shapes, and we will specify when this is the case.

• Index or slice of a tensor: x[c, i, j, k], x[:, :, k]

• A set of N datapoints: {x(i)}Ni=1, {x(i)}Ni=1, {X(i)}Ni=1

• Dot product: xTy

• Matrix product: AB

• Hadamard product (i.e., element-wise product): x⊙ y, A⊙B

• Product of two scalars: ab or a ∗ b

1



Math Notation
6.S898 Deep Learning

Fall 2024

Machine learning

• Loss function: L (usually this is a per-datapoint loss)

• Total cost over all datapoints: J

• Generic learnable parameters: θ

Neural nets

• Parameters: θ; these include weights, W, and biases, b, as well as any other learnable
parameters of a network.

• Data: x – “Data” can refer to inputs to the network, activations on hidden layers,
outputs from the network, etc. Any representation of the signal being processed is
considered to be “data”. Sometimes we will wish to distinguish between the raw
inputs, hidden units, and outputs to a network, in which case we will use x, h, and
y respectively. When we need to to distinguish between pre-activation hidden units
and post-activation, we will use z for pre-activation and h for post-activation.

• When describing batches of tensors (as is commonly encountered in code), you may
encounter xl[b, c, n,m] to represent an activation on layer l of some network, with b
indexing batch element, n and m as spatial coordinates, and c indexing channels.

• Neuron values on layer l of a deep net: xl

• xl[n] refers to the n-th neuron on layer l. For neural networks with spatial feature
maps (such as convolutional neural networks), each layer is an array of neurons, and
we will use notation such as xl[n,m] to index the neuron at location n,m.

• The layer l neural representation of the i-th datapoint in a dataset is written as x(i)
l .

• We will also use xin and xout when we are describing a particular layer or module
in a neural net and wish to speak of its inputs and outputs without having to keep
track of layer indices.

• For signals with multiple channels, including neural network feature maps, the first
dimension of the tensor indexes over channel. For example, in x ∈ RC×N×M×...,
where C is the number of channels of the signal.

• For transformers, we deviate from the previous point slightly, in order to match
standard notation: a set of tokens (which will be defined in the transformers chapter)
is represented by a [N × d] matrix, where d is the token dimensionality.
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We will use circles to represents neurons, which are scalar nodes in a graph. Edges be-
tween neurons represent a R → R transformation (usually parameterized by a single
weight associated with the edge). In many neural net architectures, the nodes of our net-
works are not individual neurons, but instead may be multidimensional vectors of neu-
rons, which we will draw as squares or rectangles. In these cases, an edge between a node
of dimensionality C1 and a node of dimensionality C2 represents a RC1 → RC2 transfor-
mation (which may be parameterized by multiple weights). The three node symbols we
use are shown below:

scalar scalar vector vector

vector (token)

vector (token)

A token is a vector of neurons used in a particular way, which will be defined in the
transformers chapter. We give it a special symbol, a rectangle, to distinguish it from other
kinds of vectors of neurons.

As shown above, sometimes we draw networks with the layers moving left to right and
sometimes bottom to top. Both mean the same thing, and the direction in each figure is
just chosen for visual clarity.

Probabilities
We will typically not distinguish between random variables and realizations of those vari-
ables; which we mean should be clear from context. When it is important to make a dis-
tinction, we will use non-bold capital letters to refer to random variables and lowercase to
refer to realizations.

Suppose X, Y are discrete random variables and x,y are realizations of those variables. X
and Y may take on values in the sets X and Y respectively.

• a = p(X = x| . . .) is the probability of the realization X = x, possibly conditioned on
some observations (a is a scalar).

• f = p(X| . . .) is the probability distribution over X , possibly conditioned on some
observations (f is a function: f : X → R). If X is discrete, f is the probability mass
function. If X is continuous, f is the probability density function.

• p(x| . . .) is shorthand for p(X = x| . . .).

• and so forth, following these patterns.

• Suppose we have defined a named distribution, e.g., pθ; then referring to pθ on its
own is shorthand for pθ(X)
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For continuous random variables, all the above notations hold except that they refer to
probability densities and probability density functions rather than probabilities and prob-
ability distributions. We will sometimes use the term “probability distribution” when re-
ferring to continuous distributions, and in those cases this should be understood to refer
to a probability density function.

Matrix calculus conventions In these notes, we adopt the following conventions for ma-
trix calculus. These conventions make the equations simpler, and that also means simpler
implementations when it comes to actually writing these equations in code. Everything in
this section is just definitions. There is no right or wrong to it. We could have used other
conventions but we will see that these are useful ones.

Vectors are represented as column vectors with shape [N × 1]:

x ≜


x1

x2
...
xN

 (1)

If y is a scalar and x is an N -dimensional vector, then the gradient ∂y
∂x

is a row vector of
shape [1×N ]:

∂y

∂x
≜

[
∂y
∂x1

∂y
∂x2

· · · ∂y
∂xN

]
(2)

If y is an M -dimensional vector and x is a N -dimensional vector then the gradient (also
called the Jacobian in this case) is shaped as [M ×N ]:

∂y

∂x
≜


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xN

...
...

...
...

∂yM
∂x1

∂yM
∂x2

· · · ∂yM
∂xN

 (3)

Finally, if W is an [N ×M ] dimensional matrix, and L is a scalar, then the gradient ∂L
W

is
represented as an [M × N ] dimensional matrix (note that the dimensions are transposed
from what you might have expected; this makes the math simpler later):

∂L
∂W

≜


∂L

∂W11
. . . ∂L

∂WN1
... . . . ...
∂L

∂W1M
. . . ∂L

∂WNM

 (4)
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We will sometimes draw matrices and vectors to help visualize the operations. For exam-
ple, if N = 3 and M = 4:

W

then, the gradient will have the form:

∂J
∂W

Conventions that will not be strictly adhered to

• We will often use x as the input to a function, and y as the output.

• f , g, and h are typically functions. The corresponding function spaces are F , G, H.

Miscellaneous

• The word dimension has two usages in the computational sciences. The first usage
is as a coordinate in a multivariate data structure, for example, “the i-th dimension
of a vector” or “a 128-dimensional feature space.” The second usage is as the shape
of a multidimensional array, as in “a 4D tensor.” We will use both these meanings in
this book and we hope the usage will be clear from context.
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